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Abstract

We propose a novel framework for real-time acquisition
and reconstruction of temporally-varying 3D phenomena
with high quality. The core of our framework is a deep
neural network, with an encoder that directly maps to the
structured illumination during acquisition, a decoder that
predicts a 1D density distribution from single-pixel mea-
surements under the optimized lighting, and an aggrega-
tion module that combines the predicted densities for each
camera into a single volume. It enables the automatic
and joint optimization of physical acquisition and compu-
tational reconstruction, and is flexible to adapt to different
hardware configurations. The effectiveness of our frame-
work is demonstrated on a lightweight setup with an off-
the-shelf projector and one or multiple cameras, achieving
a performance of 40 volumes per second at a spatial reso-
lution of 1283. We compare favorably with state-of-the-art
techniques in real and synthetic experiments, and evaluate
the impact of various factors over our pipeline.

1. Introduction

High-quality volumetric reconstruction of dynamic phe-
nomena is an essential task in scientific research, with a
wide variety of important applications, including aircraft
design [8], vehicle manufacturing [7], weather forecast-
ing [6], and even modern microscopy [29]. Expressed as a
temporally-varying 3D density volume, the captured results
help scientists better understand/validate different physical
properties (e.g., aerodynamics) of the complex underlying
phenomena.

However, it is difficult to acquire and reconstruct dy-
namic volumes from the physical world with high fidelity.
First, the samples from common 2D imaging sensor(s) are
usually not the direct measurements of a 3D volume. Fur-
thermore, the dynamic nature limits the sampling budget for
each volume. The fundamental challenge here is the infor-
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Figure 1. Using as few as 6 pre-optimized structured light pat-
terns, we capture and reconstruct high-quality, dynamic 3D vol-
umes from corresponding image measurements at different views,
with a lightweight projector-camera setup. We achieve a perfor-
mance of 40 volumes per second for both acquisition and recon-
struction. Pred. = predicted, and vol. = volume.

mation gap between the samples and the final temporally-
changing 3D volumes.

Considerable research efforts have been made over the
past decades. Approaches with uncontrolled illumination
fill in the information gap with prior knowledge, based on
heuristics [18, 20], physical rules [13, 14], or learning from
existing data [16, 33]. The reconstruction quality and com-
putation time are usually not satisfactory, especially with a
sparse sampling, as the information missing from the mea-
surements is effectively hallucinated. On the other hand,
controlled-lighting-based methods pack more physical in-
formation into the measurements to reduce the gap [19, 21].
But existing work often suffers from long acquisition time
or low Signal-to-Noise Ratio (SNR). The sampling effi-
ciency is still insufficient for high-quality acquisition of dy-
namic volumes.

To tackle the above challenge, we propose a novel frame-
work for high-quality, real-time acquisition and reconstruc-
tion of each dynamic 3D volume independently, for a
projector-camera setup. We map both the projected struc-
tured light patterns and computational reconstruction to a
neural network, which enables the automatic and joint op-
timization of hardware and software, towards optimal sam-



pling efficiency. Moreover, we propose a generalizable and
reusable 1D decoder, which only takes as input single-pixel
measurements along with the related local incident lighting
during acquisition, and outputs the 1D density distribution
over the corresponding camera ray. After applying the de-
coder to each valid camera ray at each view, we aggregate
the results to produce the final 3D density volume. Simu-
lated fluid data are used to train the entire pipeline.

The effectiveness of our framework is demonstrated on
a lightweight setup with one off-the-shelf projector and one
or multiple synchronized cameras. Using as few as 6 opti-
mized, structured light patterns, we capture and reconstruct
3D volumes with a spatial resolution of 1283 at a speed of
40 volumes per second, on a number of dynamic physical
scenes. The framework is validated with synthetic data as
well as volumes captured with light slices [21]. Finally, we
compare with state-of-the-art techniques both qualitatively
and quantitatively, and evaluate the impact of different fac-
tors over our pipeline.

2. Related Work

Below we categorize related work based on whether the
lighting is controlled or not during acquisition. Note that
our focus is on markerless capture of dynamic volumes. For
a broader view of the topic, please refer to the excellent sur-
veys [25, 35].

2.1. Uncontrolled Illumination

Existing work in this category does not require specialized
light sources, and therefore is less strict on the acquisition
conditions. The downside is the difficulty to distinguish 3D
structures from the projection onto a single 2D image sen-
sor. One class of methods employ a large number of views
to alleviate this issue, resulting in expensive hardware, such
as a dense set of cameras [28] or multiple lightfield cam-
eras [23]. On the other hand, another class of approaches
perform a more practical sparse view sampling, and rely on
priors to fill in the information gap.

Heuristic Priors. Traditionally, researchers hand-derive
priors to effectively constrain the solution space when only
limited input is available. Various priors are proposed, in-
cluding subspaces spanned by different basis functions [2,
4, 5, 24], spatial compactness [20], appearance consistency
across views [30] and reprojection consistency [41].

Physics Priors. The knowledge of physics laws can be
exploited, to essentially propagate the information about
the phenomenon across the temporal domain by, e.g., com-
puting velocity/force fields. Image-based reconstruction
can be performed in conjunction with physical simula-
tion [13, 14, 38]. Recently, Chu et al. [10] leverage Navier-
Stokes equations in an end-to-end optimization of a neural
representation to reconstruct dynamic fluid phenomena.

Learned Priors. Priors learned from a large amount of
data are generally more robust for reconstruction than hand-
crafted ones. In [15], a learned 2D discriminator constrains
observations from unseen angles. Qiu et al. [33] utilize a
differentiable advection layer and a velocity estimation net-
work to facilitate an end-to-end optimization. An adversar-
ial loss is trained to restrict the density volume to a plausible
appearance in [16].

The above reconstruction methods essentially “halluci-
nate” the information missing from the sparse input, which
may lead to inaccurate results if the priors are not applica-
ble. Moreover, their computational overhead is too expen-
sive to support real-time reconstruction. In comparison, we
aim to increase the information useful for reconstruction in
each sample via a joint optimization, at the cost of a more
controlled setup.

2.2. Controlled Lighting

This category of work programs the illumination to more
actively probe the physical domain and less rely on priors,
resulting in a higher reconstruction quality. Related work
can be further divided, depending on whether one or multi-
ple lights are used at the same time.

Light Scanning. While conceptually simple, it is chal-
lenging for scanning-based approaches to achieve a suffi-
ciently high performance for dynamic capture. One may
either reach a high scanning speed by employing expensive
hardware [21], or sacrifice the completeness of the result
to reduce the scanning burden (e.g., limited angle [3, 22]
or sparse view [9]). In the latter case, priors are also
needed to fill in the information gap, similar to Sec. 2.1.
Note that the scanning idea is widely adopted in different
fields of scientific imaging, including laser induced fluores-
cence [12], light-sheet microscopy [31], and particle image
velocity [32].

Illumination Multiplexing. This class of methods con-
siderably improve the acquisition efficiency by program-
ming multiple sources simultaneously. A density volume
is reconstructed/interpolated from a single-view image with
multiple laser lines at the same time [17]. Zhang et al. [42]
adopt a Hadamard multiplexing scheme to decrease the ex-
posure time. The total number of images, however, is not
reduced. Furthermore, compressive sensing is applied to
volumetric acquisition in [19]: only 24 input images under
random patterns are needed to compute a 3D volume, at the
cost of an involved optimization procedure. Recently, Kang
et al. [26] build a visible-light tomography prototype us-
ing 1,920 interleaved sources and detectors with a complete
360◦ coverage. Their reconstruction network is highly cou-
pled with the device. It is not clear how to extend to other
common setups, typically with more samples in the spatial
domain and less in the angular domain.

Our approach is closest to this class. Compared with the



majority of existing work, we perform a joint optimization
of physical acquisition (i.e., neural structured lighting) and
computational reconstruction for enhanced sampling effi-
ciency. In comparison with [26], we obtain substantially
superior results with a simpler, more device-independent
network, as our decoder only predicts a 1D density distri-
bution directly from measurements under different 1D inci-
dent lighting.

3. Preliminaries
Throughout this paper, we denote the number of light pat-
terns as #p, and the number of cameras/views as #v. The
cameras are named as cam0, cam1, .... We represent a
density volume with a spatial resolution of 128×128×128,
denoted as ρ. No color information is considered in our
pipeline.

Assumptions. Similar to existing work [17, 19, 26], we
assume (1) no attenuation, reflection, refraction, or multiple
scattering in light propagation; (2) a constant phase function
for all light received by one camera; (3) that the physical
phenomenon remains static in the duration for capturing #p
images/projecting #p light patterns. Note that the validity of
this imaging model is demonstrated in the above work on re-
constructing optically thin phenomena (e.g., smoke/vapor).
We do not exploit any temporal coherence: each volume is
reconstructed independently.

Imaging model. Under the above assumptions, an im-
age measurement I can be modeled as the integral of the
product between the local incident lighting Llocal and the
1D density distribution along a particular camera ray:

I =
∫

Llocal(r)ρ(p(r))dr. (1)

Here r is the distance from the camera center to a 3D point
p(r) along the camera ray. Llocal(r) is computed as fol-
lows: connect p(r) to the projector center; find the intersec-
tion with the projector plane; and fetch the intensity at the
intersection as the result. In addition, ρ(p(r)) can be viewed
as a 1D density distribution over a camera ray (which varies
with r). A graphical illustration is shown in Fig. 3-b & c.

Illumination Multiplexing. Similar to related work [1,
19, 43], our light patterns consist of vertical strips
(see Fig. 12 for examples). We represent each pattern L as
a 1D vector, which contains 128 intensities that correspond
to different strips. Due to the linearity of light transport, the
image measurement I under a pattern L can be modeled as
a linear combination of single-strip-lit measurements:

I = Σ127
i=0LiIi, (2)

where Li is the intensity of the i-th strip, and Ii is the mea-
surement with only the i-th strip on and set to an intensity
of 100%, similar to [21].

4. Acquisition Setup
Our lightweight setup consists of a single consumer-grade
projector and one or multiple vision cameras, all pointing
towards a valid volume of 96mm×96mm×96mm, as illus-
trated in Fig. 2. The projector, BenQ X3000, has a spatial
resolution of 1920×1080 and a projection speed of 240 fps.
The cameras, Basler acA1440-220umQGR, capture gray-
scale images of 1440×1080, and are synchronized with the
projector via time-varying tags (Sec. 10.3). In the setup,
cam0 is perpendicular to the projection direction, while
cam1/cam2 are ±30◦ apart, as determined by our experi-
ment in Fig. 10/Sec. 7.2.

A projection window of 512×640 roughly covers the
valid volume, with each strip of 4×640 corresponding to
an intensity in a light pattern. The strip size is determined
after balancing reconstruction resolution and SNR during
acquisition.

We carefully calibrate parameters of the system, in-
cluding the intrinsic/extrinsic/gamma curve of each cam-
era/projector, via classic methods followed by a joint, dif-
ferentiable calibration of the entire system. Please refer to
the supplementary material for details.

Projector

Cam0

Cam1

Cam2

Platform

30°

-30°

0.8m

(a) (b) Cam0

Tags

Projector

Valid
Volume

Figure 2. Our acquisition setup. A photograph of the setup is
shown in (a), with 1 projector and 3 cameras. Multiple light pat-
terns are projected to the physical scene on the platform for ac-
quisition. The time-varying tags are used for synchronization. A
top-view layout of the setup, as well as the valid volume, is in (b).

5. Overview
To scan a dynamic phenomenon, we loop over the same,
fixed set of pre-optimized light patterns (whose total num-
ber is #p) with the projector, and take corresponding pho-
tographs with one or multiple cameras. Next, for each cam-
era view, a group of #p consecutive images are processed to
produce a 3D density volume. All volumes from different
views are then aggregated to obtain the final result, when
multiple cameras are employed. We repeat this process to
reconstruct a sequence of dynamic volumes. Please refer
to Fig. 3 for a graphical illustration.

6. Our Network
For training, the network input is a synthetic 3D density
volume (Sec. 6.6). First, this volume is encoded by the light



Pattern0 Pattern1 Pattern#p-1

(a) (b)

(c)

Valid Volume

Local Incident Lighting

Predicted Volume

Encoder

…

Physical Acquisition Computational Reconstruction

…

…

C
am

0
C

am
#v

-1

D
ec

od
er

D
ec

od
er A

gg
re

ga
tio

nR
es

am
pl

e
R

es
am

pl
e

…

Resample Resample Resample

Resample Resample Resample

…

………… Same

…

…

Input Density 
Volume

Pred. Vol.(Cam0)

Pred. Vol.(Cam#v-1)

Final Volume1D Density Distr.

…

Projector 
Plane

1D Density Distribution

Local Incident 
Lighting

Local Incident 
Lighting

Resample

Resample

Projector 
Center

1D Density Distr.

Figure 3. Our pipeline (a), and the resampling process from a light pattern to 1D local incident lighting (b), and from a predicted 1D
density distribution to a density volume (c). Starting from a synthetic/physical 3D density volume, we first project the pre-optimized light
patterns (i.e., weights in the encoder) to the volume. For each valid pixel at each camera view, we send all its measurements along with the
resampled local illumination conditions to a decoder, to predict a 1D density distribution over the corresponding camera ray. All density
distributions for one camera are then collected and resampled into a single 3D volume. In the multi-camera case, the predicted volumes for
each camera are fused to obtain the final result. Pattern = light pattern, distr. = distribution, pred. = predicted, and vol. = volume.

patterns as image measurements for each camera (Sec. 6.2),
to simulate the physical measurement process. Next, for
each valid pixel at each camera view, we send all its #p
measurements along with the related local illumination con-
ditions (Fig. 3-b) to a decoder (Sec. 6.3), to predict a 1D
density distribution over the corresponding camera ray. All
density distributions for one camera are then collected and
resampled (Sec. 6.1 & Fig. 3-c) into a single 3D volume.
In the multi-camera case, the predicted volumes for each
camera are fused to obtain the final result (Sec. 6.4). Please
refer to Fig. 3 for a graphical illustration of the network, as
well as Fig. 4 for detailed architectures.

At runtime, we project #p pre-trained light patterns (i.e.,
the weights in the encoder) for acquisition, and feed the cor-
responding physical measurements for each camera as input
to the decoder. The results of the decoder will then be re-
sampled and aggregated to predict the final 3D density vol-
ume.

6.1. Resampling

Before describing individual componets of the network, we
first introduce our resampling process, which is used in the
encoder and after the decoder. Specifically, we uniformly
sample #s points along the current camera ray, whose depth
is in the range of [zmin, zmax]. zmin and zmax are com-
puted from the intersections of all camera rays of the current
view with the valid volume, as illustrated in Fig. 3-b & c.
In our experiments, #s is set to ⌈128

√
3⌉ to prevent under-

sampling.
Note that the coefficients involved in the resampling

from light patterns to local incident lighting (i.e., for lin-
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Figure 4. Architectures of 3 components of our network: the en-
coder, the decoder and the aggregation module. Measure. = mea-
surements, and pix. = pixel.

early combining the intensities in a light pattern to compute
an intensity of the local lighting), as well as from predicted
1D density distributions to a density volume, only depend
on geometric relationships between the projector, the cam-
era(s) and the valid volume. Therefore, we precompute all
the coefficients for runtime efficiency.

6.2. Encoder

The encoder simulates the measurement process, linking the
light patterns, the input density volume and the output im-
age measurements in a differentiable manner. For each pixel
location at each camera view, local incident lighting are re-
sampled from the light patterns (Fig. 3-b); we also trace into



the density volume to resample a 1D density distribution
along the current camera ray (Fig. 3-c); finally, an image
measurement is computed based on the above two factors,
according to Eq. (1). Please refer to Fig. 4 for the architec-
ture.

The encoder models the #p light patterns as optimizable
weights. For physical plausibility, each such weight goes
through a sigmoid function to ensure that as a light intensity,
it is within the range of [0, 1].

Note that our light patterns are independent of the phys-
ical sample, as they are trained to be efficient in expecta-
tion. Moreover, at a single pixel location, the fundamental
ambiguity is that there could be multiple 1D density dis-
tributions corresponding to the measurements. Our jointly-
trained lighting helps physically transform the 1D density
distribution to as unambiguous measurements as possible.

6.3. Decoder

Our decoder consists of 4 fc layers and works on a per-pixel
basis. It takes as input the measurements at the same pixel
location and the corresponding local incident lighting (re-
sampled from #p light patterns according to Sec. 6.2), and
outputs a 1D density distribution along the corresponding
camera ray. Once the decoding for all pixels of a camera is
done, we collect and resample all results into a single den-
sity volume.

Compared with a straightforward network that takes as
input the light patterns, pixel location and camera parame-
ters, our design is more elegant and efficient. The decoder
focuses on the key reconstruction task only: how to pre-
dict the densities along a camera ray, from pixel measure-
ments with different local incident light? Other complex
tasks, such as geometric transformations of input/output in-
formation, are delegated to manually coded resampling pro-
cedures.

6.4. Aggregation

In the multi-camera case, we take as input the 3D vol-
umes predicted by the decoder for each camera, and fuse
the multi-view information to output a high-quality volume
with a 3D UNet [11]. It consists of 8 convolution layers as
well as 4 skip connections (Fig. 4). While a 3D UNet works
well in all experiments, our pipeline is not married to this
way of aggregation; other architectures (e.g., MLP) can also
be plugged in (see Fig. 8). Note that if only one camera is
used in the setup, this aggregation step may be skipped.

6.5. Loss Functions

In the single-camera case, the loss function is the simple
per-voxel Root-Mean-Square Error (RMSE):

Lsingle =

√
∥x− x̃∥2

n
, (3)

where x is the density volume predicted by the decoder, x̃
is the ground-truth, and n = 1283 is the total number of
voxels of a volume.

In the multi-camera case, the loss function is defined as:

Lmulti =

√
∥xaggre − x̃∥2

n
+ λ

#v−1∑
i=0

√
∥xi − x̃∥2

n
. (4)

Here xaggre is the final volume after aggregation, xi is the
volume predicted by the decoder for the i-th camera, and λ
is set to 0.5 in all experiments. While the ultimate goal is
to minimize the first term, we find that adding the second
term helps accelerate the convergence in training. Also, we
intentionally avoid additional regularization terms for gen-
eralization of our network.

6.6. Training

Similar to existing work [26, 39], our training data are den-
sity volumes from randomly generated sequences of fluid
motions with Mantaflow [37]. Fig. 5 shows some exam-
ples. The initial values of our light patterns are drawn i.i.d.
from a normal distribution (µ = 0, σ = 1).

To increase the robustness in physical experiments, we
simulate measurement noise with an absolute Poisson noise
(λ = 0.02) and a relative Gaussian noise (µ = 0, σ = 6%)
during training, following the model in [27]. The noise
model as well as its parameters are determined via extensive
experimental comparisons between simulated and physical
measurements under different light patterns.

Figure 5. Examples of synthetic training data, each of which is
visualized from the view of cam0.

7. Results
All computation experiments are conducted on a server with
dual AMD EPYC 7763 CPUs, 768GB DDR4 memory and
8 NVIDIA GeForce RTX 4090 GPUs. Our network is im-
plemented in PyTorch, and trained using the Adam opti-
mizer, with a learning rate of 5 × 10−3 and a batch size of
5. The total training time is 48 hours. All volumetric re-
sults are rendered with Pytorch3D [34] or visualized with
Tomviz [36]. In either case, a density value lower than a
threshold of 1× 10−3 is considered noise and set to 0.

Two settings are used in this paper: a single camera with
12 light patterns, and 3 cameras with 6 patterns. Unless
noted, the latter is the default setting for our experiments.
It corresponds to an acquisition speed of 40 volumes per



second with our projector (Sec. 4). And it takes 9.2ms to
reconstruct a volume from captured images under 6 light
patterns, with our unoptimized code. Therefore, we achieve
real-time performance for both acquisition and reconstruc-
tion.

Fig. 6 shows images from 4 sequences of the sublimation
of dry ice, captured and reconstructed with our approach.
We add dry ice to a bottle with liquid water and control its
sublimation into the air with a valve, which is further di-
rected to the valid volume as a source using a rubber tube,
similar to [14]. The number of sources used in all 4 se-
quences are 1, 1, 3, and 2, respectively. For qualitative vali-
dations, we also capture the scene using a smartphone from
a view direction close to the diagonal of the valid volume,
and render our results approximately to this view. Readers
are encouraged to watch the supplementary video for ani-
mated results of all sequences.

7.1. Comparisons

We first compare our method with other competitors,
including a single-view approach [19] and multi-view
ones [10, 15], on reconstructing a real static object in Fig. 7.
For fairness, the same pattern number #p=12 is used in
multi-pattern-based methods. All approaches are compared
with a baseline method that essentially performs “optical
sectioning” of the object, by projecting one of 128 light
slices at a time, similar to [21]. None of the techniques can
produce a result whose quality is higher than ours. Note that
even though our network is trained on fluid simulations, it
generalizes well to the flower-like shape in this experiment,
due to the design of our single-pixel decoder.

Next, we compare against existing work on a synthetic
sequence of smoke in Fig. 9. Various reconstruction errors
are reported. Please also refer to the supplementary video
for a comparison of the animated sequences. Our results
are superior to existing techniques [10, 15] qualitatively and
quantitatively. Moreover, our millisecond-level reconstruc-
tion time per volume is several orders magnitudes of less
than [10] or [15], which requires about 10 to 40 minutes
to perform involved computations for reconstruction a 3D
volume.

7.2. Evaluations

We evaluate the impact of various factors over our pipeline.
Fig. 10 visualizes the impact of view angles of cam1 and
cam2. We keep the view direction of cam0 perpendicular
to the projection direction, as this minimizes the ambiguity
along the depth dimension. For cam1 and cam2, a num-
ber of different combinations of view angles are tested, by
training and computing the reconstruction error at a volu-
metric resolution of 323. It is interesting to note that the
lowest error is achieved with all view angles equally split
up π, which justifies our multi-cam configuration in Sec. 4.

Fig. 11 plots the validation losses of the networks with
different numbers of light patterns/cameras (also cf. Fig. 7
to compare the reconstruction quality with different num-
bers of cameras on a real object). The loss decreases with
the increase of the number of light patterns or cameras,
demonstrating the flexibility/scalability of our framework
to exploit different sampling capabilities.

In Fig. 12, we evaluate the impact of different sets of
light patterns over reconstruction quality with 1 camera. We
train variants of our network in conjunction with random
binary patterns or a subset of Hadamard ones. These al-
ternative patterns are fixed during training. With the same
#p, our result is more accurate. This is because our light
patterns (i.e., physical sampling) are jointly optimized with
the reconstruction network towards optimal quality, which
better harnesses the capability of the setup.

Finally, Fig. 8 tests different design choices of our net-
work on a synthetic sample. We compare with 4 alterna-
tives: (1) one-hot encoding of the camera index and the
screen-space coordinates as input to the decoder (to re-
place the 1D local incident lighting); (2) directly aggre-
gating camera-space volumes (instead of volumes defined
in a common global space); (3) aggregation with a 4-layer
MLP (instead of a 3D UNet); and (4) an end-to-end network
with 9 convolution layers, which directly predict a final vol-
ume from input measurements. For (1), such a common
encoding of input information is more straightforward, as
the camera index and the screen-space coordinates are suf-
ficient to determine a camera ray, from which the local in-
cident lighting can be derived. However, this encoding is
not as simple and elegant as our input, as now the network
would have the additional burden to learn to effectively re-
sample the light patterns. For (2), that network would need
to implicitly align all volumes anyway, making it less ef-
ficient. For (3), it shows that our pipeline can switch to
different ways of aggregations with ease. For (4), an end-
to-end network does not fully exploit the structure of the
reconstruction problem, leading to inferior accuracy.

8. Limitations and Future Work
Similar to any work based on sequential patterns, the phys-
ical phenomenon of interest is assumed to remain static for
the duration of multi-pattern projection. To lift this restric-
tion, one may employ an advanced light source (e.g., the
lightweight lightfield projector in [40]), or consider addi-
tional physical dimensions (e.g., wavelength/polarization),
to encode sufficient information in a single image for high-
quality volumetric reconstruction. In addition, it will be in-
teresting to extend the imaging model to account for more
complex optical phenomena, such as reflection, refraction
and multiple scattering. Moreover, combining our approach
with neural representations seems to be a promising re-
search direction. Finally, we hope that our lightweight sys-
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Figure 6. Reconstructions of different dynamic scenes. We visualize a subset of the reconstructed results from the sequences of 4 dynamic
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Figure 7. Comparisons of different techniques on a real static object. The leftmost image is the reconstruction result from a baseline
method that essentially performs optical sectioning [21]. For all other results, quantitative errors with respect to the baseline result are
reported in SSIM/PSNR/RMSE(×10−2) at the bottom-right corner of corresponding images. All volumes are rendered with a non-input
view.

tem can enable novel applications in the future, where both
real-time acquisition and reconstruction are desired.
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9. Supplementary Video

The video mainly consists of two parts: reconstruction re-
sults of 4 captured sequences, and comparisons with differ-
ent methods on the reconstruction of a synthetic sequence.

For the first part of the video, the layout is as follows.
We show the captured input images from each camera on
the left. The captured image at a non-input view is in the
center, with a time code displayed in the lower-left corner.
And the 3D reconstruction at a view close to the center non-
input view is visualized on the right.

For the second part, we compare with PINF [10] and
GlobalTrans [15] on a synthetic smoke sequence with 190
frames. The same 3 input cameras are used for all meth-
ods. In the video, we compare the reconstruction results,
rendered at one input view and a novel view. Quantitative
errors in SSIM/PSNR/RMSE are reported at the bottom-
right corner of each rendered volume. Note that SSIM and
PSNR measure the 2D error of the rendered volume at a
view, while RMSE measures the error over the entire 3D
volume. In addition, the errors averaged over all frames are
reported in Tab. 1 and 2. In all cases, our approach outper-
forms competing approaches in terms of result quality.

We also compare the computation time of different meth-
ods on reconstructing the synthetic sequence. For a fair
comparison, we conduct all profiling experiments on a sin-
gle GeForce RTX 3090 for back-compatibility with Glob-
alTrans, whose code cannot be executed on RTX 4090 as
in our main paper. The results are 13 seconds, 13 hours and
84 hours for our approach, PINF [10] and GlobalTrans [15],
respectively.

View Ours PINF[10] GlobalTrans[15]

Input(1/3) 0.98/34.36 0.96/29.04 0.96/28.66
Novel 0.97/33.15 0.95/29.83 0.94/27.14

Table 1. Comparison with different methods on reconstruction
quality (SSIM/PSNR) of a synthetic sequence. We list the recon-
struction errors averaged over all frames shown in the final part
of the supplementary video. The second row shows the recon-
struction errors for one of the three input views (i.e., cam0). The
situation with other input views is similar. The third row is the
reconstruction errors for a novel non-input view.

Ours PINF[10] GlobalTrans[15]
1.20× 10−2 2.72× 10−2 2.50× 10−2

Table 2. Comparison with different methods on reconstruction
quality (RMSE) of a synthetic sequence. The RMSE is computed
as the error averaged over each reconstructed 3D volume.

10. Calibrations

10.1. Geometric Calibration

We calibrate the intrinsic and extrinsic parameters of the
projector and the cameras in the following 4 steps.

(1) We pre-calibrate the intrinsic parameters of all cam-
eras with a chessboard pattern.

(2) We pre-calibrate the intrinsic parameters of the pro-
jector using a calibration board with printed ARTags and
one of the cameras. Please refer to Fig. 13-a for an illus-
tration. We cast vertical and horizontal lines from the pro-
jector to the board (Fig. 13-c), and take pictures with the
camera. In each captured image, the screen-space coordi-
nates of each intersection can be estimated with sub-pixel
accuracy, and the extrinsic parameters of the board can be
computed from the ARTags. With the additional help of the
camera intrinsic parameters from the previous step, we cal-
culate the camera-space 3D positions of each intersection.
We repeat this process for different combinations of rotated
board/camera. The 3D positions of the intersections along
with their 2D counterparts on the projector plane are used
to compute the intrinsic parameters of the projector.

(3) We pre-calibrate the extrinsic parameters of the pro-
jector and all cameras with the calibration board. The board
is rotated to different angles, one at a time (Fig. 13-b). Just
like in step (2), we cast vertical and horizontal lines to the
board. With the intrinsic parameters of each camera, we
calculate the camera-space 3D positions of each intersec-
tion. The 3D positions of all intersections at each camera
view are then used to compute the extrinsic parameters of
the corresponding camera with respect to the projector.

(4) Similar to existing work [40], all pre-calibrated pa-
rameters are jointly fine-tuned in an end-to-end fashion with
differential optimization, by minimizing the reprojection
error of each intersection at each camera view. We fine-
tune the intrinsic and extrinsic parameters for 20,000 epochs
with a learning rate of 10−3.
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Figure 13. Geometric calibration (a-c) and the projector response curve (d). (a) Pre-calibration of the intrinsic parameters of the projector.
(b) Pre-calibration of the extrinsic parameters of the projector and all cameras. (c) A photograph of the calibration board with projected
horizontal and vertical lines. The reprojected intersections points are marked in red. (d) The projector response curve.

10.2. Radiometric Calibration

Our machine vision cameras can be set up to employ a lin-
ear response curve. For the projector, we directly capture
its response curve as follows. We cast uniform patterns
onto the calibration board, with the projector pixel intensity
changes from 0 to 255. For each such pattern, we record
the pixel intensity averaged over a square region observed
by one calibrated camera. The collection of all pairs of pro-
jector/camera pixel intensity is the response curve, as plot-
ted in Fig. 13-d. To linearize the projector, we apply the
standard approach of inverting a 1D cumulative distribution
function computed from the response curve.

10.3. Synchronization

All cameras are synchronized via a hardware trigger. In ad-
dition, we project 3 special tags along with each light pat-
tern to facilitate projector-camera synchronization, as our
projector does not support external triggers. Please refer to
the inset of Fig. 2-a for tag examples.

Specifically, each tag is a white box. The center tag only
appears with the first light pattern, to mark the start of our
group of patterns. The left tag is projected with each odd-
numbered pattern, while the right with each even-numbered
pattern. An ideal synchronization will result in either the
left or right tag in a captured image. If this is the case, the
synchronization is finished. Otherwise, both boxes of differ-
ent intensities can be observed. We then estimate the offset
to the starting time of one exposure, by dividing the ob-
served intensities by pre-calibrated intensities of the white
boxes. Finally, we add this offset as a feedback to a pro-
portional–integral–derivative (PID) algorithm, to adjust the
start time of the exposure. Once the algorithm converges,
the synchronization is done and we can start to capture the
physical phenomenon.
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