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Efficient Reflectance Capture with a Deep Gated
Mixture-of-Experts
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Abstract—We present a novel framework to efficiently acquire anisotropic reflectance in a pixel-independent fashion, using a deep
gated mixture-of-experts. While existing work employs a unified network to handle all possible input, our network automatically learns
to condition on the input for enhanced reconstruction. We train a gating module that takes photometric measurements as input and
selects one out of a number of specialized decoders for reflectance reconstruction, essentially trading generality for quality. A common
pre-trained latent-transform module is also appended to each decoder, to offset the burden of the increased number of decoders. In
addition, the illumination conditions during acquisition can be jointly optimized. The effectiveness of our framework is validated on a
wide variety of challenging near-planar samples with a lightstage. Compared with the state-of-the-art technique, our quality is improved
with the same number of input images, and our input image number can be reduced to about 1/3 for equal-quality results. We further
generalize the framework to enhance a state-of-the-art technique on non-planar reflectance scanning.

Index Terms—computational illumination, anisotropic reflectance, SVBRDF
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1 INTRODUCTION

HIGH-QUALITY digitization of physical material appear-
ance is an important problem in computer graph-

ics and vision, with a wide range of applications includ-
ing visual effects, cultural heritage, e-commerce and com-
puter games. The digital result, often represented as a 6D
spatially-varying bidirectional reflectance distribution func-
tion (SVBRDF), can be rendered to faithfully reproduce the
complex physical look that varies with location, lighting and
view direction.

Directly capturing a general, near-planar reflectance
sample can be performed with a spherical gantry, which
exhaustively samples the combinations of all lighting and
view directions [1], [2]. This results in thousands or even
millions of photographs, making it prohibitively expensive
both in time and storage.

To improve the acquisition efficiency, one highly suc-
cessful class of methods employ illumination multiplex-
ing: instead of using a single source at a time, multiple
lights are programmed simultaneously; the corresponding
photometric measurements are then processed to produce
the reflectance result in a pixel-independent manner. Rep-
resentative work includes the lightstage [3], [4], the linear
light source reflectometry [5], [6], and setups with an LCD
screen [7] or an LED array [8]. Recently, neural acquisition
techniques [9], [10], [11] map both the physical acquisition
and the computational reconstruction to a neural network,
enabling the joint and automatic optimization of both pro-
cesses. This leads to a substantially improved efficiency:
32 photographs for pixel-independent reconstruction of
anisotropic reflectance from a single view [9].

Our goal is to further push the limit of physical acqui-
sition efficiency, as it is critical for light exposure safety in
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Fig. 1: Rendering results of a variety of complex near-planar
appearance reconstructed using our neural network, with
novel view and lighting conditions. Please also refer to the
accompanying video for an animated sequence.

digitizing delicate artifacts in cultural heritage, or scalability
to mass digitization in e-commerce. We observe that state-
of-the-art work is based on a unified neural network for
all possible input, leading to a relatively lower processing
efficiency, due to the potential interference effects. Inspired
by the recent success of gated mixture-of-experts [12], [13],
our key idea is to introduce deep ”divide-and-conquer” to
enhance reflectance acquisition.

In this paper, we propose a novel framework to adap-
tively learn to capture and reconstruct an SVBRDF. We
automatically and jointly train a gating module to select
one out of a number of specialized decoders for opti-
mal reflectance reconstruction, based on photometric mea-
surements acquired with pre-optimized lighting conditions.
Each decoder is specifically tailored to efficiently handle a
subset of possible reflectance only, essentially trading gen-
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erality for quality. To alleviate the burden of the increasing
number of decoders, we additionally pre-train a reflectance
latent-space transform and simplify all decoders to output
latent vectors only. Moreover, the illumination conditions
during acquisition can be optimized in conjunction with the
main network to improve sampling efficiency in the angular
domain.

The effectiveness of our framework is demonstrated
using an illumination multiplexing setup on 6 sets of chal-
lenging near-planar samples that vary considerably in ap-
pearance (Fig. 1). We improve the acquisition efficiency of
anisotropic reflectance: for results with the same number of
input images, our reconstruction quality is above that of the
state-of-the-art technique [9], both qualitatively and quanti-
tatively; for equal-quality results, we reduce the number of
input photographs to 12 (corresponding to 6 seconds of ac-
quisition time), in comparison with 32 as in [9]. Our results
are validated against photographs, as well as rendered with
novel lighting and view conditions. To further demonstrate
the generality of the framework, we apply it to boost the
quality of non-planar reflectance scanning [8].

2 RELATED WORK

Below we mainly review existing work with active illumi-
nation, which is most related to this paper. For a compre-
hensive overview of reflectance acquisition, please refer to
excellent recent surveys [14], [15], [16], [17].

2.1 Direct Sampling
A straightforward approach to capture a general SVBRDF
with high quality is to densely sample its 6D domain [1],
[2]. A spherical gantry takes photographs of a sample with
a moving pair of a camera and a point light, effectively
enumerating different combinations of the view and light-
ing directions. The acquisition process is prohibitively time
consuming.

To improve the physical efficiency, various priors
have been introduced to properly regularize the problem,
while considerably reducing the number of measurements.
Isotropic reflectance of a homogeneous convex object is
recovered from a single view direction [18]. Lensch et al. [19]
model the appearance as a linear combination of basis
materials, to constrain the reconstruction from a sparse
number of flash-lit images. Wang et al. [20] exploit the
spatial similarity of reflectance and the spatial variation
of local frames, to complete the microfacet distributions of
BRDFs from single-view measurements. The reflectance is
assumed to lie on a low-dimensional manifold for recon-
struction from sparse samples [21]. Hui et al. [22] propose a
dictionary-based reflectance prior. Recently, Nam et al. [23]
take hundreds of flash photographs from multiple views, to
compute a 3D geometry and isotropic reflectance expressed
as a linear combination of basis materials, via an involved
alternating optimization.

The quality of appearance reconstructed with strong-
prior-based methods is usually limited, due to the lack of
anisotropic reflections or intricate spatial details. In compar-
ison, our approach does not rely on the aforementioned pri-
ors. Instead, we reconstruct complex anisotropic appearance
in a pixel-independent fashion.

2.2 Illumination Multiplexing
Instead of using one light at a time, illumination-
multiplexing-based approaches program the intensities of a
number of sources simultaneously, substantially improving
the acquisition efficiency and signal-to-noise-ratio. Tradi-
tional work first manually designs illumination conditions,
captures corresponding responses of a material sample un-
der such conditions and finally recovers the reflectance
properties from measurements.

Lightstages take photographs of a material sample un-
der gradient illumination [3] or spherical harmonics [4],
and recover the reflectance from a manually derived in-
verse lookup table, which maps the observed radiance
to anisotropic BRDF parameters. In [5], [6], a linear light
source is regularly moved over a planar material sample,
and the SVBRDF is reconstructed from the corresponding
appearance variations. Irregular motion of the linear light
is supported in [24] with the help of pre-calibrated physical
BRDF patches that are imaged with the sample. Aittala et
al. [7] employ a camera and a near-field LCD panel as a pro-
grammable light source, to capture an isotropic reflectance
based on a frequency domain analysis. Nam et al. [25]
propose a system that reconstructs micro-scale reflectance
via an alternating optimization, with the assumption of a
small number of basis materials.

Recently, neural reflectance acquisition techniques map
both the physical acquisition and computational process-
ing to a single network, enabling the joint and automatic
optimization of both the hardware and software. High-
quality results are demonstrated on reconstructing planar
reflectance [9]/non-planar reflectance and geometry [10],
[11] from structured input, as well as non-planar reflectance
from unstructured input using a free-form hand-held scan-
ner [8]. Compared with traditional methods, this leads to
nearly an order of magnitude increase in the acquisition
efficiency. Our work is most similar to this line of work.
Instead of employing a unified network, we adaptively
process each input with a most suitable network, further
boosting the sampling efficiency.

2.3 Estimation from Highly Sparse Input
Because of its practical value, SVBRDF estimation from
a very small number of photographs, often with uncon-
trolled illumination, has received considerable attention in
academia. This challenging problem is highly ill-posed, due
to the huge gap in the amount of information between
the limited input and the 6D output. Therefore, strong,
hand-crafted or learning-based priors must be supplied to
fill in this information gap. As a result, the final quality
is affected: the spatial resolution of the output is usually
limited; and general reflectance, such as anisotropic one, is
not supported.

The structural similarity is exploited to estimate a sta-
tionary SVBRDF from a flash-/non-flash-lit pair of im-
ages [26], or even a single flash image [27]. Li et al. [28]
present a CNN-based solution for modeling SVBRDF from
a single photograph of a planar sample with unknown
natural illumination, using a self-augmentation training
process. Deschaintre et al. propose networks trained over a
large dataset of procedural materials to predict an isotropic
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SVBRDF from a single [29] or multiple [30] flash-lit pho-
tographs. In [31], a latent embedding of planar SVBRDFs
is learned to regularize the optimization for appearance
reconstruction from an arbitrary number of input images.
Adversarial frameworks [32], [33] are explored to estimate
an isotropic SVBRDF from flash-lit image(s). Henzler et
al. [34] propose to learn a generative model for material
textures, which takes a flash-lit image of a stationary natural
material as input. Guo et al. [35] introduce highlight-aware
convolution to estimate the saturated highlights from the
adjacent unsaturated area in a single image.

3 ACQUISITION SETUP

We build a hemicube-shaped, near-field lightstage to con-
duct physical experiments (Fig. 2). Its size is about
70cm×70cm×40cm. We install a 24MP Basler a2A5328-
15ucPRO vision camera to capture photographs of a near-
planar material sample placed on the bottom plane of the
device, from an angle of approximately 45◦. The maximum
size of the sample is 20cm×20cm. There are 12,288 high-
intensity RGB LEDs around the sample, attached with dif-
fusers and mounted to the left, right, front, back and top
sides of our setup. The LED pitch is 1cm, and the intensity
is quantized with 8 bits and controlled using Pulse Width
Modulation (PWM) with house-made circuits. We calibrate
the intrinsic and extrinsic parameters of the camera, as
well as the positions, orientations and the angular intensity
distribution of each LED. In addition, vignetting is corrected
with a flat field source, and color calibration is performed
with an X-Rite ColorChecker Passport.

4 PRELIMINARIES

Following the work of LDAE [9], we first list the relationship
among the image measurement B from a surface point p,
the reflectance f and the intensity I of each LED of the
device. Below we focus on a single channel for brevity.

B(I,xp,np, tp) =
∑
l

I(l)

∫
1

||xl − xp||2
Ψ(xl,−ωi)

V (xl,xp)f(ωi
′;ωo

′,p)(ωi · np)
+(−ωi · nl)

+dxl. (1)

Here l is the index of a planar light source, and I(l) is its
intensity in the range of [0, 1], the collection of which will
be referred to as a lighting pattern in this paper. Moreover,
xp/np/tp is the position/normal/tangent of p, while xl/nl

is the position/normal of a point on the light whose index
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Fig. 2: Our acquisition setup: a photograph (left) and a side
view (right).

is l. We denote ωi/ωo as the lighting/view direction in
the world space, and ω

′

i/ω
′

o as the counterparts in the local
frame of p. ωi can be computed as ωi =

xl−xp

||xl−xp|| . Ψ(xl, ·)
represents the angular distribution of the light intensity. V is
a binary visibility function between xl and xp. The operator
(·)+ computes the dot product between two vectors, and
clamps a negative result to zero.

Our framework is not tied to any specific BRDF model.
In this paper, we use the anisotropic GGX model [36] to
efficiently represent f :

f(ω′
i;ω

′
o,p)

=
ρd
π

+ ρs
D(ω′

h;αx, αy)F (ω′
i, ω

′
h)G(ω′

i, ω
′
o;αx, αy)

4(ωi · np)(ωo · np)
, (2)

where ρd/ρs is the diffuse/specular albedo, αx/αy is the
roughness and ω′

h is the half vector. In addition, D is the
microfacet distribution function, F is the Fresnel term, and
G is the geometry term for shadowing/masking effects. An
index of refraction of 1.5 is used in F in all experiments.
Please refer to the original paper for precise definitions of
D, F and G.

Due to the linearity of B with respect to I (Eq. 1), B can
be expressed as the dot product between I and a lumitexel
m:

B(I) =
∑
l

I(l)m(l). (3)

Note that we drop xp, np and tp for brevity. Here the lumi-
texel m is defined as the collection of virtual measurements
of the BRDF f at a surface point, with one light on at a
time [19]. It is a function of the light index l as follows:

m(l) = B({I(l) = 1, ∀k �=lI(k) = 0}), (4)

which can be decomposed as the sum of a diffuse lumitexel
md and a specular one ms [10]:

m(l) = md(l) +ms(l), (5)

where md/ms records the reflected radiances due to dif-
fuse/specular reflections, respectively.

5 OVERVIEW

We propose a deep gated mixture-of-experts network, to ef-
ficiently reconstruct the reflectance of a near-planar sample
from single-view photographs under a set of pre-optimized
lighting patterns. For each valid pixel location, the net-
work first physically encodes the corresponding lumitexel
as photometric measurements. Next, they are fed to the
gating module to pick a suitable decoder, tailored for similar
lumitexels. The decoder then transforms the same set of
measurements to separately recover the diffuse/specular
lumitexel. We fit a 4D BRDF along with a local frame to the
decoded lumitexels at each pixel, which yields texture maps
that represent the final 6D SVBRDF. Please refer to Fig. 3 for
a graphical illustration.
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Fig. 3: Our processing pipeline. For each valid pixel location, we first average the RGB channels of photometric
measurements to a single gray-scale channel and gather all measurements. The results are then sent to the gating module
for gating computation, and the decoder with the highest Pr (the red arrow) is selected to produce a diffuse/specular
lumitexel. Finally, the BRDF parameters along with a corresponding local frame are fitted to the network output, which are
gathered to produce the final texture maps.
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Fig. 4: Our network and its training loss. For each valid pixel location, It consists of a gating module, a total of n specialized
decoders and a latent-transform module. The gating module has log2 n single-bit gating subnets, the collection of their
predictions determines a probability distribution over all decoders. The pre-trained latent-transform module (L-T Mod. in
the figure) transforms the latent vector output from a decoder to a diffuse/specular lumitexel. The total loss is computed
as the weighted average of the prediction loss of each decoder, using the aforementioned gating probability as weights.

6 THE NETWORK

Our goal is to introduce a differentiable framework that
automatically learns to condition on the input for improved
reflectance reconstruction quality. The idea is to first split
the set of all possible input, and then process each subset
separately. The reconstruction quality is expected to be
improved, since each sub-space usually has a fractional size
of the original space, and processing specialized to a sub-
space can therefore trade generality for quality.

6.1 Input/Output

The input to our network is the set of # physical mea-
surements of a point on the material sample, captured
with different pre-optimized lighting patterns. During train-
ing, the output is the diffuse/specular lumitexels recon-
structed with different decoders; at runtime, the output
is the diffuse/specular lumitexel from a single decoder.
We use # to denote the number of measurements/lighting
patterns. Note that similar to [10], we separately output
diffuse/specular lumitexels to reduce the complexity of
subsequent processing. We use a dimension of 12288, the
same as the number of LEDs, to represent the specular
lumitexel. And a dimension of 192 is used for the diffuse
lumitexel, due to its low-frequency nature.
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Fig. 5: The network architecture of a 1-bit gating subnet, a
decoder and the latent-transform module. In the former two
networks, each fc layer before the last one is followed by a
bn layer and then a leaky ReLU activation layer.

6.2 Architecture

The main network consists of three parts: a gating module,
a total of n specialized decoders and a latent-transform
module (n = 128 in most experiments). Please refer to Fig. 4
for an overview of the architecture and Fig. 5 for network
details. Each decoder has an index of a log2 n-bit integer that
starts from 0.

The gating module can be viewed as a continuous form
of supervised hashing. It takes as input the photometric
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measurements at a pixel, and predicts a probability distri-
bution over all decoders. The module consists of 6 fc layers
followed by a softmax layer. Here the intuition is that more
probabilities should be allocated to decoders that produce
lower reconstruction losses for a given input, and vice versa.
While a continuous probability distribution is predicted for
differentiability, in experiments it often converges close to a
0-1 distribution at the end of training, essentially exploiting
the best performing decoder.

Specifically, the gating module consists of log2 n single-
bit gating subnets. Each subnet takes as input the photo-
metric measurements and outputs g(k), the probability of
the k-th bit of the index of the most suitable decoder being
1. Equivalently, for a decoder with an index of a, its chance
of being picked by the gating can be computed as a joint
probability:

Pr(a) =

(log2 n)−1∏
k=0

[akg(k) + (1− ak)(1− g(k))], (6)

where ak denotes the k-th bit of a. Note that our framework
is not tied to a specific way of gating. The current one is
employed for its simplicity and O(log2 n) space complexity,
and can be replaced with other methods (see Fig. 8).

Next, each decoder takes as input the same photometric
measurements and produces as output a latent vector, which
is further converted to a diffuse/specular lumitexel, by a
pre-trained latent-transform module. Each decoder has the
same structure with 5 fc layers. While one may employ
decoders that directly generate lumitexels as output without
the latent-transform module, we find it more efficient to
exploit a latent space of all lumitexels, as the intrinsic
dimensionality of GGX BRDF is limited. This substantially
reduces the size of each decoder, allowing us to train more
of them for improved quality.

Finally, the latent-transform module is pre-trained as
part of an autoencoder, whose input is the physical lumi-
texel and the output is the corresponding diffuse/specular
lumitexel. The dumbbell-shaped autoencoder has 17 fc lay-
ers. Its 128D bottleneck corresponds to a latent vector of
a lumitexel. After pre-training, we discard the part of the
network prior to the bottleneck, and leave the remaining
as the latent-transform module. Other work on the latent
representation of 4D appearance may also be explored [37],
[38], [39].

Note that similar to previous work like [9], we link the
lighting patterns during acquisition with the main network
in a differentiable fashion: measurements of the reflected
radiances under physically projected lighting patterns are
essentially modeled as dot products between the physical
lumitexel and the lighting patterns, according to Eq. 1.
This allows the joint optimization of the active illumination
conditions, the gating and the decoders, towards optimal
reconstruction quality.

6.3 Loss Function

The loss function measures the squared difference between
the predicted diffuse/specular lumitexels and their labels,

for each decoder weighted by a probability determined by
gating (Eq. 6):

L =

n−1∑
a=0

Pr(a)[λdΣl[m
a
d(l)− m̃d(l)]

2+

λsΣl[log(1 +ma
s(l))− log(1 + m̃s(l))]

2]. (7)

Here ma
d/ma

s represents the diffuse/specular lumitexel pre-
dicted by the decoder with the index a, respectively. The
corresponding ground-truths are denoted with a tilde. A log
transform is performed to compress the high dynamic range
in the specular reflectance. We use λd = 1 and λs = 0.05 in
all experiments. Since the gating module affects Pr(a), it
gets optimized in conjunction with the decoders via back-
propagation.

Note that our loss is a mixture of prediction error of
each decoder, not the error on the mixture of predictions
as in [12]. Also we do not find it necessary to apply extra
regularizations to force load balancing among decoders.
This is because load balancing is not a sufficient or necessary
condition for obtaining an optimal loss. In fact, our gating
module and decoders are automatically and jointly trained
towards the goal of minimizing the loss.

6.4 Training

Our network is implemented with PyTorch, and trained
using the Adam optimizer with mini-batches of 50 and a
momentum of 0.9. Xavier initialization is applied, except
that the gating is initialized with a zero-mean Gaussian
noise (σ = 0.1/0.01 for weights/biases). Both the latent
autoencoder and the main network are trained for 1 million
iterations with a learning rate of 1 × 10−4. Based on the
GGX BRDF model and the calibration data of the device,
we generate 200 million virtual lumitexels as training data
(Eq. 1). Specifically, for the location on the physical sample,
we randomly choose a point from the valid region of the
sample plane. Similarly, for the shading frame, we randomly
sample np in the upper hemisphere of the sample plane,
and then tp as a random unit vector that is orthogonal to
np. For the BRDF f , we use the anisotropic GGX model and
randomly sample ρd/ρs uniformly in the range of [0, 1], and
αx/αy uniformly on the log scale in the range of [0.006, 0.5].

For robustness in physical acquisition, we apply dropout
regularization with a rate of 30% to most layers, and per-
turb the synthetic measurements as well as sampled BRDF
parameters with a multiplicative Gaussian noise (µ = 1,
σ = 5%), similar to [10]. Moreover, we multiply a Gaussian
noise (µ = 1, σ = 5%) to the input of the softmax layer
in the gating module, to make it more resilient to potential
measurement noise.

6.5 Runtime

We first average the RGB channels of photometric mea-
surements to a single gray-scale channel. The results are
then sent to our network for gating computation, and the
decoder with the highest Pr is selected to produce a dif-
fuse/specular lumitexel. Note that we never mix the outputs
of multiple decoders. Next, we nonlinearly fit a normal to
the diffuse lumitexel, which serves as a good initialization
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Fig. 6: Visualization of our lighting patterns (2nd row), patterns trained with LDAE (3rd row) and computed by PCA on
anisotropic samples (4th row). Each lighting pattern is parameterized on a cross, by unfolding all side faces to the top
plane. The first row shows actual photographs of the sample set PAPER lit with corresponding lighting patterns in the
second row. Note that only a subset of all patterns are shown due to limited space.

for a subsequent fitting of the shading frame and rough-
ness parameters from the specular lumitexel, using L-BFGS-
B [40]. Finally, with the fixed shading frame and rough-
nesses, we compute the RGB diffuse/specular albedos, by
solving non-negative linear least squares, constrained by
the original photometric measurements, similar to [8]. An
illustration is shown in the latter part of Fig. 3.

7 RESULTS & DISCUSSIONS

We capture the reflectance of 6 sets of near-planar physical
samples (40 distinct samples in total) with a wide variation
in appearance. For a set of 12/32 lighting patterns, it takes
6/15 seconds in total to capture high-dynamic-range (HDR)
images using exposure bracketing. Similar to [10], a lighting
pattern that contains both positive and negative weights is
split into two for physical realization: one containing all
positive weights with others set to zero, and the other with
all negative weights sign-flipped and others set to zero.
Throughout this paper, we report the number of physically
realized lighting patterns for consistency.

All computation is done on a workstation with dual Intel
Xeon 4210 CPUs, 256GB DDR4 memory and 4 NVIDIA
GeForce RTX 3090 GPUs. It takes on average 72 hours
to train our network for 1 million iterations. The latent
autoencoder takes 60 hours to pre-train. At runtime, it takes
5 minutes for our network to decode 1 million pairs of
diffuse/specular lumitexels from measurements, and 1.5
hours for the subsequent GGX parameter fitting. The timing
is comparable to existing work like LDAE. We use a spatial
resolution of 10242 to store all GGX parameters.

Fig. 6 visualizes our lighting patterns, the patterns
trained using LDAE along with those computed by PCA on
anisotropic training samples. Our patterns exhibit higher-
frequency details. In Fig. 17, the gating result at each pixel
(i.e., the decoder index with the highest Pr) is visualized.
Our gating module automatically learns to cluster pixels
with similar high-dimensional appearance for efficient pro-
cessing.

To see what lumitexels each decoder is tuned to, we
show in Fig. 7 the average lumitexel among all that are sent
to a particular decoder by our gating module, computed
over 100K randomly sampled lumitexels. Moreover, the
percentage of these lumitexels whose maximum predicted
Pr is above a threshold is plotted in Fig. 8: there is almost
always a dominating decoder.

In Fig. 17, we show reflectance fitting results of 4 phys-
ical sample sets with our network (#=32) as well as 2
sets using a different lighting pattern number (#=12), in
the form of texture maps that represent GGX parameters.
Our network separates the diffuse and specular reflections,
estimates challenging anisotropic reflectance and produces
high-quality normal maps. The smallest estimated rough-
ness is about 0.03 on the coins. It is interesting to observe
that how the highly complex appearance on the banknotes
in the PAPER set is modeled by our approach. In addition,
please refer to the accompanying video for rendering results
of the sample sets with novel view and lighting conditions.
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Fig. 7: The lumitexels averaged over all that are sent to a
particular decoder by our gating module. Each image shows
the average lumitexel for a different decoder. A subset of all
average lumitexels are displayed due to limited space.
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Fig. 8: Gating characteristics. The top plots the ratio of
random lumitexels whose maximum predicted Pr is above
a certain threshold. The bottom shows the validation losses
with different number of decoders, given a fixed network
size. We also compare with gating using [12].

7.1 Comparisons

We validate our results against photographs, and compare
with LDAE with the same number of lighting patterns
(#=32) in Fig. 9. In all cases, our network produces results
that more closely resemble the corresponding photographs
with a novel lighting condition not used in training, com-
pared with LDAE; superior quantitative errors in SSIM are
also reported, demonstrating our improved efficiency (i.e.,
effective sampled information per lighting pattern).

In Fig. 10, our network (#=12) is compared with LDAE
(#=32), both of which have similar validation losses on ei-
ther of the two sample sets, according to Fig. 12. Our results
are comparable to LDAE qualitatively and quantitatively,
with respect to the corresponding photograph. Note that we
need only about 1/3 the number of input images, showing
a considerable increase in efficiency.

Photo Ours(#=32)

SSIM = 0.90

LDAE(#=32)

SSIM = 0.85

SSIM = 0.95 SSIM = 0.92

SSIM = 0.94 SSIM = 0.92

SSIM = 0.97 SSIM = 0.95

Fig. 9: Comparison between our network and LDAE at the
same number of lighting patterns. From the left column to
right, a photograph of the physical sample set, our result
and the result of LDAE. The yellow boxes highlight the
areas with relatively large differences.

Photo Ours(#=12)

SSIM = 0.94

LDAE(#=32)

SSIM = 0.93

SSIM = 0.88 SSIM = 0.86

Fig. 10: Comparison between our network(#=12) and
LDAE(#=32) with similar validation losses. From the left
column to right, a photograph of the physical sample set,
our result and the result of LDAE.
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Fig. 11: Reconstruction quality of pre-trained latent autoencoder. The input lumitexel (top row) is compressed into a latent
code, which is then decoded with the latent-transform module back to a reconstructed lumitexel (bottom).

7.2 Evaluations
In this section, we evaluate the impact of various parame-
ters/factors over the prediction quality of our network.

First, we validate the reconstruction quality of our latent-
transform module in Fig. 11. A wide variety of lumitexels,
including highly anisotropic/specular ones, can be faith-
fully reconstructed. In Fig. 13, we evaluate the impact of
the number of lighting patterns over lumitexel reconstruc-
tion quality. With the reduction in the number of lighting
patterns, the reconstruction quality decreases. Nevertheless,
the specular highlight shape is well preserved with our
approach using as few as 12 lighting patterns. The quality
is comparable with LDAE at a higher number of patterns
(#=32). Note that in this and following figures, only spec-
ular lumitexels are shown, as the diffuse lumitexels are of
low frequency and can be accurately recovered in different
settings.

LDAE

LDAE

LDAE

LDAE

PCA

Ours

Ours
Ours

Ours

Ours LDAE(2x)

90

105

120

135

150

165

180

8 16 32 64 128

L

Number of Lighting Patterns(#)

Fig. 12: Comparisons of average prediction qualities of
different networks with different parameters. The loss L is
computed on the validation dataset. Our networks/LDAEs
with different number of input images are marked as
yellow/red dots, respectively. We also show the losses of
several variants in blue dots. Please refer to Sec. 7.2 for
details.

We plot the validation losses of different networks with
different parameters in Fig. 12, representing the average
reconstruction quality of lumitexels. The horizontal axis
indicates the input number of lighting patterns (#), and the
vertical axis shows the network loss L (Eq. 7). Note that our
L is computed on the prediction with the highest Pr. For
the vanilla version, our network consistently outperforms
LDAE at the same # (cf. Fig. 13), marked as yellow and
red dots. Since the size of our network is about twice that
of LDAE, we double the capacity of their network and find
that the validation loss stays on the same level, marked as
LDAE(2x). This demonstrates the benefit of our architecture
over LDAE at similar capacities. We also switch the lighting

patterns in our network to fixed ones, obtained by applying
principal component analysis to a large number of synthetic
lumitexels, marked as PCA. The loss increases substantially,
demonstrating the benefit of our jointly trained lighting
patterns.

Ground-
Truth

Ours
(#=32)

Ours
(#=20)

Ours
(#=12)

LDAE
(#=32)

4.07 5.31 5.75 5.98

0.58 0.78 1.18 2.31

0.70 0.78 1.07 2.01

2.96 3.17 4.44 5.54

Fig. 13: Impact of lighting pattern number over lumitexel
reconstruction quality. The first column are the ground-
truths and the next three columns are the reconstruction re-
sults of our networks with 128 decoders but different light-
ing patterns(#=32/20/12). The last column are results of
LDAE(#=32). The numerical errors, computed using Eq. 7
with λd = 0, are listed at the bottom-right corner of related
images. All results are direct network outputs prior to
fitting.

We further study the impact of the number of decoders
over reconstruction quality, given a fixed network size,
in Fig. 8 and 14. As the lower half of Fig. 8 indicates,
more smaller decoders are preferred over fewer bigger ones,
though at the cost of increased training time. That being
said, if the number of decoders gets too large (>256 in
our case), the capacity of each decoder may be insufficient
for accurate predictions. Examples of reconstructed specular
lumitexels with different networks are visualized in Fig. 14.

Finally, sensitivity tests over our gated MoE-enhanced
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G
.T

.
n

=
32

1.42 4.66 3.64 3.91 3.03

n
=

64

1.11 4.43 3.33 3.75 2.28

n
=

12
8

0.99 4.31 2.85 3.48 1.86

n
=

25
6

0.58 4.18 2.55 2.69 1.87

n
=

51
2

1.83 5.80 3.90 5.27 3.35

LD
A

E(
2x

)

1.96 7.40 4.55 8.84 3.54

Fig. 14: Impact of the number of decoders over lumitexel
reconstruction quality. For the top row to bottom, ground-
truth lumitexels, reconstruction results from our networks
with different numbers of decoders (n=32/64/128/256/512)
and the results of LDAE(2x).

network are performed in Fig. 15. Random Gaussian noise
(µ = 1, σ = 30%) is multiplied to each synthetic measure-
ment to account for possible noise not modeled in the ac-
quisition process. For each row in Fig. 15, we keep a sample
if its decoder index with the highest Pr is different from
any of the previous samples. These samples are then sorted
according to specular lumitexel reconstruction error (Eq. 7
with λd = 0), and displayed alongside with the ground-
truth. The results show that the output are consistent across
decoders whose index is close (measured with Hamming
distance) to the one with the highest Pr when no noise
perturbation is added. Here we do not observe undesired
discontinuity in output lumitexels, when the decoder index
is flipped by 1 or 2 bits.

7.3 Generalizations

Our framework is not coupled with near-planar reflectance,
nor is it limited to our setup. To demonstrate its generality,
we extend to improve a state-of-the-art free-form scanning
technique for non-planar reflectance [8]. Their original net-
work consists of two parts. The first part converts image
measurements at different conditions to a 1,024D global
feature vector, and the second further transforms the feature
vector into a diffuse/specular lumitexel. To apply our idea,

2.73 3.60 3.89 5.46

G.T. a = 118 a = 126 a = 114 a = 94

3.53 4.62 5.79 6.98

G.T. a = 62 a = 38 a = 30 a = 54

3.41 4.41 5.99 6.93

G.T. a = 37 a = 43 a = 5 a = 36

4.22 4.40 4.64 4.88

G.T. a = 81 a = 97 a = 17 a = 113

Fig. 15: Impact of measurement noise over reconstruction
quality. Random Gaussian noise is multiplied to perturb
each measurement. From the 2nd column to the last at
each row, the specular lumitexel prediction from a set of
random-noise-perturbed measurements is shown. The index
a of the decoder with the highest Pr is listed below each
corresponding image, and the reconstruction error is shown
at the bottom-right corner. Please see Sec. 7.2 for details.

Photo MoE-Enhanced

SSIM = 0.92

[8]

SSIM = 0.90

Fig. 16: Generalization of our framework to improve a state-
of-the-art free-form scanning technique [8]. From the left to
right, a photograph, the result of our gated MoE-enhanced
network and the vanilla [8], using the same input.

we modify the second part of their network as follows: first,
a gating module that conditions on the global feature vector
is added; it then selects one out of 64 decoders, each of
which produces a 128D latent vector as output; finally, the
latent vector is converted to a diffuse/specular lumitexel
via a pre-trained latent-transform module (Sec. 6.1). With
this modification, we considerably reduce the validation loss
from 10.3 to 8.3. As visualized in Fig. 16, our enhanced
network also more precisely predicts the reflectance (i.e.,
no more ”hallucinated” highlight on Bowser’s hat) on a
physical sample.
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Fig. 17: GGX model fitting and gating results using our network (# = 32 for the top 4 sample sets and # = 12 for
the remaining two). Each normal/tangent is added with (1, 1, 1) and then divided by 2 to fit to the range of [0, 1]3 for
visualization. The roughness αx/αy is visualized in the red/green channel. We color-code the index of the decoder with
the maximum predicted probability at each pixel in the last column; on the top-right corner of each image, a histogram
of decoder selection is additionally visualized: each inset has a resolution of 16×8, representing 128 decoders; each pixel
indicates the number of times that the gating network selects the corresponding decoder across the current sample: the
blue-to-yellow visualization represents a range from 0 to 5000.
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8 LIMITATIONS & FUTURE WORK

Our work shares similar limitations with existing work on
neural acquisition (e.g., [9], [11]), including unexpected out-
put on physical lumitexels that substantially deviate from
training data, and no considerations for global illumination.

In the future, it will be promising to address the afore-
mentioned limitations via means like differentiable ren-
dering that takes global illumination into account. It will
also be useful to further improve the acquisition efficiency,
by performing additional multiplexing in the spectral do-
main [8]. In addition, we would like to apply our high-
level idea to boost the performance of other work on neural
acquisition or neural representations [41]. Finally, it will be
interesting to extend to handle more general appearance,
such as subsurface scattering.
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