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Introduction

• Realistic Digital Models are Important
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Introduction

• Realistic Digital Models are Important
• Acquisition of Physical Objects is Crucial in Graphics/Vision
• Efficient, Joint Capture of Reflectance & Shape is Challenging

1. High-dimensional Unknowns
2. Reflectance & Shape Tightly Coupled in Measurements
3. Limited Number of Samples in Practice



Introduction

• Realistic Digital Models are Important
• Acquisition of Physical Objects is Crucial in Graphics/Vision
• Efficient Acquisition of Reflectance & Shape is Challenging
• Our Goal

• Optimize Physical Acquisition Efficiency in Joint Capture of Reflectance & 
Shape



Our Framework

• Map Physical Acquisition & Computational Reconstruction to a Deep
Neural Network
• Automatic Optimization of Illumination w.r.t Joint Acquisition Efficiency
• Breaks Mutual Dependency between Reflectance & Shape



Our Framework

• Map Physical Acquisition & Computational Reconstruction to a Deep
Neural Network
• Carefully Designed Network Architecture

• Shares Information between Reflectance & Shape Estimation
• Combines Domain-Specific Knowledge with Deep Learning



Our Framework

• Map Physical Acquisition & Computational Reconstruction to a Deep
Neural Network
• Carefully Designed Network Architecture
• Flexible / Adaptable

• Setup’s Geometry
• Properties of Appearance



Related Work

• Geometry Reconstruction with a Diffuse Assumption
• Structured Lighting [Scharstein and Szeliski 2003]
/ Structure-from-Motion [Schonberger et al. 2016]

• Diffuse-dominant Reflectance Assumption
• Photometric Stereo [Woodham 1980]

• Latest Work Limited to Isotropic Reflectance [Ikehata 2018]



Related Work

• Geometry Reconstruction with a Diffuse Assumption
• Reflectance Capture on a Known/Pre-acquired Shape

• Direct Sampling [Dana et al. 1999; Lawrence et al. 2006]
• Reflectance Prior [Dong et al. 2010; Aittala et al. 2015; Wu et al. 2016]
• Illumination Multiplexing [Gardner et al. 2003; Ghosh et al. 2009; Aittala et al.

2013; Kang et al. 2018]



Related Work

• Geometry Reconstruction with a Diffuse Assumption
• Reflectance Capture on a Known/Pre-acquired Shape
• Joint Acquisition of Reflectance & Shape

• Reflectance Prior [Holroyd et al. 2010; Zhou et al. 2013; Nam et al. 2018]
• Illumination Prior [Tunwattanapong et al. 2013; Xia et al. 2016]
• Alternating Optimization [Nam et al. 2018]
• Physical Efficiency not Optimized



Related Work

• Geometry Reconstruction with a Diffuse Assumption
• Reflectance Capture on a Known/Pre-acquired Shape
• Joint Acquisition of Reflectance & Shape
• Deep-Learning-Assisted Modeling

• Reflectance Modeling [Li et al. 2017; Deschaintre et al. 2018] 
• Shape Modeling [Kendall et al. 2017; Yao et al. 2018]
• Joint Modeling [Li et al. 2018]
• Focus on Shape / Reflectance Reconstruction from Highly Sparse Input
• Physical Acquisition Process Not Optimized
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Hardware Prototype

• 80cm x 80cm x 80cm
• Single Camera
• 24,576 LEDs
• 20,000+ FPS for Binary Lighting Patterns

• High-precision Control / Synchronization via FPGA
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Lumitexel
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Illumination Multiplexing
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Illumination Multiplexing
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Illumination Multiplexing
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Illumination Multiplexing
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Illumination Multiplexing

• What are Optimal Lighting Patterns for Efficient, Joint Capture of 
Reflectance & Shape?
• How to Reconstruct Reflectance & Shape from Measurements under 

Such Patterns?



Our Pipeline



Our Pipeline



Our Pipeline



Our Network

• 1 Encoder
• Physical Capture

• 4 Decoders
• Computational 

Reconstruction

• Asymmetric
• Mixed-Domain

• Per-Pixel



Loss Function

Diffuse Lumitexel

Specular Lumitexel

Normal

Approximate Position



Training

• 200 Million Synthetic Lumitexels
• Random Position / Local Frame / BRDF Parameters (Anisotropic GGX)
• Based on Calibration Data

• To Increase Robustness
• Add Gaussian Noise to Simulated Measurements
• 10% Dropout Rate to fc Layers



Geometry Reconstruction
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Geometry Reconstruction
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Reflectance Reconstruction

• Input:
• Decoded Lumitexel
• 3D Position

• Output:
• BRDF Parameters (Diffuse / Specular Albedo, Roughnesses, Normal, Tangent)

• Non-linear Optimization using L-BFGS-B



Results



Statistics

• Training: 70 hours
• # Lighting Patterns: 16(isotropic)~32(anisotropic)
• Per-view Acquisition: 7~15 seconds
• Total Acquisition (24 views): 6 minutes

• Decoding: 15 minutes
• Shape Reconstruction: 45 minutes
• Reflectance Fitting: 2 hours



Lighting Patterns



Network Results



Network Results









Validation Results



Limitations

• No Explicit Modeling of Inter-reflection / Self-shadowing
• Cannot Recover Appearance Substantially Deviated from Training 

Samples
• Cannot Reconstruct Details not Observed from Sampled Views



Conclusions & Future Work

• Deep-Learning-Based Framework for Efficient, High-quality 
Acquisition of Unknown Reflectance & Shape



Conclusions & Future Work

• Deep-Learning-Based Framework for Efficient, High-quality 
Acquisition of Unknown Reflectance & Shape
• High-quality Photometric Stereo for General Anisotropic Reflectance 

under Controlled Illumination
• Average Normal Prediction Error 3.8◦



Conclusions & Future Work

• Deep-Learning-Based Framework for Efficient, High-quality 
Acquisition of Unknown Reflectance & Shape
• High-quality Photometric Stereo for General Anisotropic Reflectance 

under Controlled Illumination

• Inspire More Research on Differentiable Acquisition
• Apply to Existing / Novel Setups
• Exploit View Coherence
• Handle Other Types of Appearance
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Design Considerations

• Approximate Positions
• Sufficient for Diffuse Albedo Computation
• Insufficient for Geometry Reconstruction

• Per-Pixel Normal Prediction v.s. Fitting
• Breaks the Mutual Dependency of Reflectance and Shape Reconstruction

• Lumitexel Prediction v.s. BRDF Parameter Regression
• No Spatial Aggregation in Our Network
• Exploit State-of-the-Art Related Work
• Avoid Combinatorial Explosion in Training Data


