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Fig. 1. Using as few as 16 ∼ 32 automatically learned lighting patterns, we efficiently take multi-view photographs of a physical object in a high-performance
near-field lightstage, and simultaneously reconstruct its reflectance and shape. Here we show the captured results of a wide variety of real-world objects
under novel lighting and view conditions. Background texture courtesy of Design Connected EOOD.

Wepropose a novel framework that automatically learns the lighting patterns
for efficient, joint acquisition of unknown reflectance and shape. The core of
our framework is a deep neural network, with a shared linear encoder that
directly corresponds to the lighting patterns used in physical acquisition,
as well as non-linear decoders that output per-pixel normal and diffuse /
specular information from photographs. We exploit the diffuse and normal
information from multiple views to reconstruct a detailed 3D shape, and
then fit BRDF parameters to the diffuse / specular information, producing
texture maps as reflectance results. We demonstrate the effectiveness of the
framework with physical objects that vary considerably in reflectance and
shape, acquired with as few as 16 ∼ 32 lighting patterns that correspond
to 7 ∼ 15 seconds of per-view acquisition time. Our framework is useful
for optimizing the efficiency in both novel and existing setups, as it can
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automatically adapt to various factors, including the geometry / the lighting
layout of the device and the properties of appearance.
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1 INTRODUCTION
Digitally acquiring the appearance of real-world objects is a long-
standing problem in computer graphics and vision, with applications
in cultural heritage, e-commerce, visual effects and electronic games.
A high-quality digitalized object, represented as a 3D mesh and a 6D
Spatially-Varying Bidirectional Reflectance Distribution Function
(SVBRDF), can be rendered to faithfully reproduce the look of the
object in the virtual world, from any view and lighting conditions.
However, efficient capture of both reflectance and shape is fun-

damentally challenging. At one hand, the unknowns are of high
dimensionality, and at the same time tightly coupled in image-based
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measurements, as modeled by the rendering equation [Kajiya 1986].
Therefore, one would like to take as many measurements as possible,
to gain sufficient information to recover the complex reflectance and
shape separately. On the other hand, in real-world applications like
e-commerce and visual inspection, the number of samples can be
strictly limited in practice, as the physical capture time is critical in
the digitization of a large number of different products. The key to
address the above issue is to optimize the acquisition efficiency.

Significant research efforts have been made towards efficient cap-
ture of reflectance and shape. Geometry acquisition of objects with
simple reflectance characteristics is a mature field. Highly accurate
geometry can be obtained using techniques like structured light-
ing [Scharstein and Szeliski 2003] or structure-from-motion [Schön-
berger et al. 2016]. Reflectance capture on a simple or known geom-
etry can realistically reproduce complex appearance, such as sharp
specular reflections, using techniques like illumination multiplexing
that efficiently samples the domain of lighting directions [Gardner
et al. 2003; Kang et al. 2018].
Joint estimation of reflectance and shape is substantially more

challenging than capturing either factor alone. Existing approaches
make assumptions like distant lighting [Tunwattanapong et al. 2013],
isotropic reflectance [Xia et al. 2016; Zhou et al. 2013], or a small
number of basis materials [Holroyd et al. 2010; Nam et al. 2018] to
reduce the uncertainty in the solution. While these assumptions
make the problem more tractable by limiting its scope, no previous
work explicitly considers the optimization of physical acquisition
efficiency in the general setting, thus considerably hinders wider
applications in practice.
In this paper, we present a general framework to learn illumi-

nation multiplexing for high-quality, efficient capture of both re-
flectance and shape. We map the physical acquisition and the com-
putational reconstruction to a deep neural network. This allows the
automatic optimization of lighting patterns with respect to the joint
acquisition efficiency, and breaks the complex mutual dependency
between reflectance and shape in image measurements. We also
carefully design the network structure to share information between
reflectance and shape reconstruction, as well as to combine exist-
ing domain-specific knowledge on digitization with deep learning.
Furthermore, our framework is flexible and can adapt to various
factors, including the configuration of the physical setup and the
properties of appearance. This is in contrast with the majority of
existing work, where the lighting patterns require sophisticated
manual derivations, and cannot be easily adapted to other setups.

We build a high-performance near-field lightstage to demonstrate
the effectiveness of our framework. A number of objects with con-
siderable variations in reflectance and shape (Fig. 1) are captured,
using as few as 16 ∼ 32 lighting patterns that correspond to 7 ∼ 15
seconds of per-view acquisition time. In comparison, 44 distant
lighting patterns are used in [Tunwattanapong et al. 2013], a tech-
nique most similar to ours. We also validate our results with the
photographs under the same lighting and view condition.

2 RELATED WORK
To digitally reconstruct the reflectance and/or the shape of a phys-
ical object is a central problem in computer graphics and vision.

Existing work can be roughly divided into two categories, based on
whether the incident illumination is controlled or not. For the sake
of brevity, wemainly review acquisition approaches under controlled
lighting, which are most related to this paper. Interested readers
are referred to excellent recent surveys [Dong 2019; Guarnera et al.
2016; Weinmann and Klein 2015; Weyrich et al. 2009].

2.1 Geometry Reconstruction with the Diffuse Assumption
Highly accurate geometry can be reconstructed with active illumi-
nation methods such as structured lighting [Scharstein and Szeliski
2003]. On the other hand, passive approaches like structure-from-
motion [Schönberger et al. 2016] achieve huge successes in recov-
ering shapes with rich surface textures. However, both classes of
methods assume a diffuse-dominant reflectance that is invariant
with view conditions, to establish multi-view correspondences. For
objects whose appearance can be represented by a general SVBRDF,
this assumption no longer holds: the reflectance that changes with
the view is often treated as outliers, or physically modified via means
like powder coating.
Another line of work is photometric stereo [Woodham 1980].

Assuming a diffuse reflectance, it estimates a normal field that can
be subsequently integrated into a 3D surface, from appearance
variations under different illuminations. However, even one lat-
est technique [Ikehata 2018] is limited to handle isotropic specular
reflections, under as many as 96 distant lighting conditions.

2.2 Spatially-Varying Reflectance Capture on a Known
Shape

Direct sampling the 6D domain of SVBRDF by mechanically posi-
tioning a camera and a light source is prohibitively expensive [Dana
et al. 1999; Lawrence et al. 2006]. Priors over the reflectance data
are introduced to reduce the acquisition cost, including a linear
combination of basis materials [Lensch et al. 2003; Wu et al. 2016],
a low-dimensional reflectance manifold [Dong et al. 2010], and
stochastic-texture-like materials [Aittala et al. 2015].
Illumination-multiplexing-based approaches can capture high-

quality results efficiently, as a number of light sources are pro-
grammed simultaneously. The lightstage system [Ghosh et al. 2009]
captures the photographs of a material sample under spherical har-
monics lighting patterns, and recovers the reflectance from a manu-
ally derived inverse lookup table, which maps the observed radiance
to BRDF parameters. The linear light source reflectometry [Chen
et al. 2014; Gardner et al. 2003] moves a linear light source over
a planar material sample, and reconstructs the SVBRDF from the
corresponding appearance variations. Aittala et al. [2013] use a cam-
era and a near-field LCD panel as the light source, to capture an
isotropic reflectance based on a frequency domain analysis.
Kang et al. [2018] learn an autoencoder that jointly optimizes

a small number of the lighting patterns and the corresponding
decoding network, to efficiently acquire a general reflectance. It
is not straightforward to extend their paper to our case, due to
the extra complexity of unknown geometry, and the complicated
interplay between reflectance and shape in image measurements.
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2.3 Joint Acquisition of Reflectance and Shape
Tunwattanapong et al. [2013] build a rotating LED arc to project con-
tinuous spherical harmonics patterns to a sample object. With the
distant lighting assumption, per-pixel reflectance maps are first com-
puted for each view, which are then used as input to a multi-view
stereo algorithm for shape reconstruction. The technique cannot
be easily extended to our case, as an accurate 3D position at each
pixel is required to eliminate the near-field effects for reflectance
reconstruction. Zhou et al. [2013] capture different views of an ob-
ject with a number of circular LED lights turned on one at a time.
Multi-view photometric stereo is applied to estimate the geome-
try, followed by an isotropic reflectance computation. The sparse
number of lights prevents per-pixel reflectance estimation. The ge-
ometry reconstruction heavily relies on the isotropic reflectance
assumption and cannot be easily extended to handle anisotropic one.
Holroyd et al. [2010] build a gantry with a projector-camera pair
and use phase-shift patterns for geometry reconstruction. However,
a strong prior is imposed on the recovered reflectance, due to the
sparse sampling in the angular domain.

Xia et al. [2016] recover the shape and isotropic reflectance from
a video sequence of rotating object, exploiting the discontinuities in
the unknown illumination. Recently, Nam et al. [2018] take hundreds
of flash photographs frommultiple views, to compute a 3D geometry
and isotropic reflectance expressed as a linear combination of basis
materials, via an involved alternating optimization.

2.4 Deep-Learning-Assisted Modeling
Considerable research progress has been made in applying the deep
learning techniques to reflectance modeling [Deschaintre et al. 2018;
Li et al. 2017] and shapemodeling [Kendall et al. 2017; Yao et al. 2018].
Recently, Li et al. [2018] regress the isotropic reflectance and a depth
map directly from a single image under unknown environment
illumination and flash lighting. Wu et al. [2018] transfer multi-view
images of a 3D shape with a homogeneous isotropic reflectance into
a diffuse one via a generative adversarial network, to improve the
geometry reconstruction.
While the majority of existing work in this category focuses on

recovering shape / reflectance from highly sparse input, we take a
more active step further by optimizing both the measurement and
the reconstruction processes using deep learning, for high-quality,
simultaneous acquisition of reflectance and geometry.

3 ACQUISITION SETUP
Our acquisition device is a near-field lightstage in the shape of a
cube of 80cm3 (Fig. 2). It is designed to illuminate a physical object
placed on a digital turntable at the center, with different lighting
patterns. A single machine vision camera, Basler acA2440-35uc is
installed at the center of the edge between the top and the front
face, taking photographs of the sample at about 45 degrees above
the horizontal plane, at the resolution of 2, 448 × 2, 048. The camera
has a narrow field of view and is focused on the sample object,
whose maximum size is 20cm × 20cm × 20cm. The turntable can
be programmed to rotate the object. Please refer to Fig. 3 for an
illustration.
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Fig. 2. Our acquisition setup. From the left to right, the exterior of the setup,
the main circuit board, and a black calibration sphere inside the setup with
all LEDs on.
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Fig. 3. Our LED layout (left) and acquisition device (right). Each face of our
acquisition box has 4 LED boards, each of which consists of 32×32 LEDs.
All LEDs are unfolded to a 2D plane in a vertical cross way. A side view of
our device is illustrated on the right.

Our setup is equippedwith 24, 576white LEDs, which are grouped
as 24 boards of 32×32 LEDs, attached with polycarbonate diffusers
and mounted to all six faces of the cube. We intentionally leave
small gaps between light boards, for additional camera installations
in the future. The distance between two adjacent LEDs is 1cm. The
LED intensity is quantized with 8 bits, and independently controlled
via Pulse Width Modulation (PWM) with an Intel Cyclone 10 FPGA
and circuits we designed. The device can display over 20, 000 binary
lighting patterns, each of which contains 24, 576 bits, in 1 second.
We employ Low-Voltage Differential Signaling (LVDS) to reliably
transmit the high frequency LED control signals from the FPGA to
LED boards, which can be as distant as 200cm away.
Before acquisition, we calibrate the intrinsic and extrinsic pa-

rameters of the camera, as well as the positions, orientations and
the angular intensity distribution of LEDs. Color calibration is per-
formed with an X-Rite ColorChecker Passport. The scale ambiguity
of diffuse / specular albedo is resolved using a planar diffuse patch of
a uniform albedo [Gardner et al. 2003]. The rotation of the turntable
is estimated from printed markers [Fiala 2005] on its surface.

4 PRELIMINARIES
Without loss of generality, we assume a single-camera acquisition
setup with independently controlled, near-field or distant light
sources. We also assume an opaque object of interest, whose geom-
etry can be modeled as a 3D mesh and surface appearance as an

ACM Trans. Graph., Vol. 38, No. 6, Article 165. Publication date: November 2019.



165:4 • Kang, et al

anisotropic SVBRDF. No polarization filter is used. Moreover, the
reflectance at each point is reconstructed independently, with no
assumption on its spatial coherence.
The radiance B reflected to the camera can be modeled as:

B(I , p) =
∑
l

I (l)

∫ 1
| |xl − xp | |2

Ψ(xl,−ωi)V (xl, xp)

f (ωi
′;ωo

′, p)(ωi · np)(−ωi · nl)dxl. (1)

Here each light l is viewed as a locally planar source. xp/np is the
position / normal of a point p on the physical sample, and xl/nl is
the position / normal of a point on the light source l . ωi/ωo denotes
the lighting / view directions in the world space, while ωi

′/ωo
′ is

the counterpart in the local frame of p. The lighting direction is com-
puted as ωi =

xl−xp
| |xl−xp | |

. I (l) is the programmable intensity for the
light l , and the array {I (l)} corresponds to a lighting pattern. Ψ(xl, ·)
describes the angular distribution of the light intensity.V is a binary
function that tests the visibility between xl and xp. f (·;ωo

′, p) is a
2D BRDF slice, a function of the lighting direction.
While our approach is not tied to any specific BRDF model, we

use the anisotropic GGX model [Walter et al. 2007], the de-facto
industry standard [McAuley et al. 2012], to efficiently represent f :

f (ωi;ωo, p)

=
ρd
π
+ ρs

DGGX(ωh;αx ,αy )F (ωi,ωh)GGGX(ωi,ωo;αx,αy)
4(ωi · n)(ωo · n)

. (2)

Here ρd/ρs is the diffuse / specular albedo, αx /αy is the rough-
ness, and ωh is the half vector. DGGX is the microfacet distribution
function, F is the Fresnel term and GGGX accounts for shadowing /
masking effects (see Sec. A for details).
Due to the linearity of B with respect to I (Eq. 1), B can be ex-

pressed as the dot product between I and a lumitexelm:

B(I , p) = Σl I (l)m(l ; p). (3)

Herem is a function of the light source l , defined on the surface
point p of the sample object [Lensch et al. 2003]:

m(l ; p) = B({I (l) = 1,∀j,l I (j) = 0}, p). (4)

Each element ofm records the reflected radiance B from p to the
camera, with only one light source turned on and set to its maximum
intensity, and the remaining lights off. For brevity, we drop p from
m in the remaining text.

Furthermore, a lumitexel m can be expressed as the sum of a
diffuse lumitexelmd and a specular onems :

m(l) =md (l) +ms (l). (5)

Heremd /ms records the reflected radiances due to the diffuse /
specular reflections, respectively.

5 OVERVIEW
We propose a mixed-domain neural network to capture the re-
flectance and shape of a physical object, from multi-view pho-
tographs under the same, small set of lighting patterns. For each
valid pixel location from each view, the network physically encodes
the lumitexel at the corresponding visible point p on the object

surface into a small number of measured values, by projecting dif-
ferent lighting patterns; it then computationally decodes the mea-
surements as the diffuse / specular lumitexels, the normal and the
approximate position (Sec. 6). From the decoded diffuse / normal /
position information at different views, we compute a detailed 3D
mesh with multi-view stereo (Sec. 7). Once the shape is determined,
we fit a 4D BRDF along with a local frame to the diffuse / specular
lumitexels at every surface point (Sec. 8), which yields texture maps
that represent the final 6D SVBRDF. Fig. 4 illustrates our processing
pipeline.
Note that we use the terms "encoder / decoder" as the output of

our network can be viewed as different components of the input,
despite not being exactly the same.

5.1 Design Considerations
Here we briefly discuss the major design considerations of the neu-
ral network. First, we do not directly use the end-to-end learned
approximate position p for the final geometry. The reason is that
although the lumitexel of p contains position-dependent informa-
tion (e.g., the form factor (−ωi ·nl)

| |xl−xp | |2
in Eq. 1), such information is

not sensitive to small changes in p, which prevents the determina-
tion of high-precision 3D positions. Nevertheless, our predicted p is
sufficiently accurate to help eliminate the near-field effects in the
decoded diffuse lumitexel for estimating ρd (Sec. 7).
Second, instead of using the output from the reflectance recon-

struction as in existing work [Kang et al. 2018; Nam et al. 2018], we
learn to predict the per-pixel normal directly. The reason is that in
our near-field case, the reflectance and geometry are highly coupled:
the reflectance reconstruction requires a position at the current
pixel, while the shape reconstruction takes normals as input. We
leverage the deep neural network to break this mutual dependency.
Similar to previous work [Kang et al. 2018], we choose to learn

the lumitexels, rather than directly regressing the BRDF parameters,
due to the simple spatially invariant, linear relationship among
the lighting pattern, the lumitexel and the measurements (Eq. 3).
In comparison, the mapping from an input lumitexel to its BRDF
parameters is more complicated and challenging for learning.

Moreover, the majority of existing work on multi-view stereo spa-
tially aggregates information to establish reliable correspondences
across different views, a crucial step for geometry reconstruction.
However, our network takes as input the lumitexel of a single point
only. The reason is that this makes the network simple and circum-
vents the possible combinatorial explosion in synthesizing training
data of varied reflectance and shape. As a result, we exploit the
state-of-the-art existing work for spatial aggregation, instead of
placing the burden to our network.

6 OUR NETWORK

6.1 Input / Output
The input to our network is a physical grayscale lumitexel at a visible
point on the object surface from a particular view. The output is
the corresponding diffuse / specular lumitexel, the normal and the
approximate position (Fig. 5). The extension to RGB channels is
detailed in Sec. 9.
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Fig. 5. The architecture of our mixed-domain neural network. The physical
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represents all lighting patterns. Four nonlinear decoders then recover the
diffuse / specular lumitexel, the normal and the approximate position from
the measurements. Here # indicates the number of lighting patterns.

We employ slightly different parameterizations for the output
diffuse / specular lumitexels, compared with the input physical one
(see Fig. 10 for illustration). We uniformly resample each face of the
cube where all lights are located, and use a cube map of 6 × 82 /
6 × 642 for the diffuse / specular lumitexels. The idea is to produce
outputs that are more uniformly sampled in the angular domain for
reflectance and shape reconstruction. In comparison, the parame-
terization of the input lumitexel (Eq. 4) is strictly determined by the
physical lighting layout, subject to multiple practical factors (e.g.,
we need to leave gaps between LED boards for camera installation

in our setup). The difference in the cube map resolution is due to
the different frequency natures in diffuse / specular lumitexels.

6.2 Loss Function
The loss function L of our network consists of four terms, which
measure the differences between the predicted diffuse / specular
lumitexels / normal / position and their ground-truths:

L = λdLd (md ) + λsLs (ms ) + λnLn (n) + λpLp (p). (6)

The terms are defined as follows:

Ld (md ) = Σl [md (l) − m̃d (l)]
2, (7)

Ls (ms ) = Σl [log(1 +ms (l)) − log(1 + m̃s (l))]
2, (8)

Ln (n) = | |n − ñ| |2, (9)
Lp (p) = | |p − p̃| |2, (10)

wheremd /ms is the diffuse / specular lumitexel, n is the normal and
p is the position, all predicted by our network. The corresponding
ground-truths are denoted with a tilde. We use λd = 5, λs = 0.01,
λn = 1 and λp = 0.001 in our experiments. Note that in Ls , we apply
a log transform to compress the high dynamic range in specular
lumitexels, similar to previous work [Kang et al. 2018; Nielsen et al.
2015].

6.3 Architecture
The network consists of one shared linear encoder, whose weights
correspond to lighting patterns, and four nonlinear decoders (Fig. 5).
Specifically, the shared encoder is a single fully connected (fc)

layer that transforms a physical lumitexel into a number of mea-
surements by multiplying with the lighting patterns. It has no bias
and h×c linear weights, where h is the dimension of a lumitexel and
2c is the number of physical patterns: for physical realization, each
h × 1 weights correspond to two lighting patterns, one containing
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the positive weights and the other negative ones, similar to previ-
ous work [Tunwattanapong et al. 2013]. To bound the weights and
prevent degeneration in the presence of noise (Sec. 6.4), there is a
normalization step for every group of h×1 weights, to enforce its l2-
norm to be 1. In physical acquisition, we convert each h × 1 weights
into two lighting patterns, quantize each pattern, project onto the
sample, and finally combine the measurements as if computing a
dot product between the physical lumitexel and the weights (Eq. 3).
For the decoders, their shared input is a number of measured

pixel values under different lighting patterns. To avoid making
assumptions about the relationships among components of the mea-
surements, the majority part of all decoders are made of fc layers of
different sizes, as illustrated in Fig. 5. Each fc layer, except for the
final one that outputs the result, is followed by a leaky ReLU activa-
tion layer. As shown in the figure, the first few layers are shared by
the decoders for diffuse / specular lumitexels and positions, as their
tasks are correlated. For the normal decoder, we incorporate a-priori
knowledge with two additional normalization layers. One layer fol-
lows the input measurements, and the other preceding the final
result: the former is to directly eliminate the impact of reflectance
intensity, which is irrelevant to the normal; the latter is to explicitly
produce a unit vector as output.

6.4 Training
Our neural network is implementedwith the TensorFlow framework.
The Adam optimizer [Kingma and Ba 2015] is employed with mini-
batches of 50 and a momentum of 0.9. For the encoder, the initial
weights are drawn i.i.d. from a normal distribution (µ = 0, σ = 1).
For all weights in the decoder, Xavier initialization is applied. To
train the network, we run 5 million iterations with a learning rate
of 1 × 10−4.

A large number of high-quality, varied data are critical for training
a good network. To handle the wide range of possible reflectance
and shape in the real world, we synthetically generate 200 million
lumitexels, by evaluating Eq. 4 with randomly sampled location p,
fr and its the local frame. Among all the samples, 80% are used for
training and 20% for validation.
Specifically, we first randomly sample p from a valid volume

inside the lightstage (detailed in Sec. 3). For the local frame, we
sample n in an upper hemisphere whose apex aligns with the view
directionωo, and then t as a random unit vector that is orthogonal to
n. For the BRDF fr , we use the anisotropic GGXmodel and randomly
sample ρd/ρs uniformly in the range of [0, 1], and αx /αy uniformly
on the log scale in the range of [0.006, 0.5]. The calibration data of
the acquisition setup (Sec. 3) are applied when evaluating Eq. 4 for
lumitexel synthesis.
To increase the robustness of our network to physical measure-

ment noise, we add to each component η of the encoding result a
Gaussian noise, with a zero mean and a standard deviation of 1

100 |η |.
Furthermore, dropout regularization with a rate of 10% is applied to
all fc layers, except the ones right preceding the outputs.

7 GEOMETRY RECONSTRUCTION
The shape reconstruction consists of two steps: a rough mesh is
first computed with multi-view stereo, based on estimated diffuse
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Point Cloud Rough Geometry Detailed Shape

Fig. 6. Geometry reconstruction. Using multi-view diffuse and normal maps
from our network, we compute a point cloud with multi-view stereo. Then
a rough geometry is obtained by screened Poisson surface reconstruction.
We further optimize for a detailed shape, based on the normal maps. Not
all input maps are shown due to the space limit.

albedos and normals; then it is refined with the densely decoded
normals to obtain the final detailed geometry. Please refer to Fig. 6
for an example.

Specifically, for rough geometry computation, we first transform
the decoded normals for each view to a common coordinate system,
resulting in a set of normal maps. We also efficiently estimate ρd
from each decoded diffuse lumitexelmd , yielding a set of diffuse
maps at different views: with decoded p and n, we synthetically
generate a diffuse lumitexel m0 with a unit diffuse albedo and a
zero specular one, according to Eq. 2 & 4; then ρd is computed as
ρd =

(md ·m0)
(m0 ·m0)

that minimizes
∑
l [md (l) − ρdm0(l)]2.

The multi-view diffuse / normal maps are respectively used as
input to a state-of-the-art multi-view stereo technique [Schönberger
et al. 2016], resulting in two point clouds. We then combine them
into a single point cloud, and apply screened Poisson surface recon-
struction [Kazhdan and Hoppe 2013] to compute a rough 3D mesh.
Note that we use diffuse albedos / normals due to their invariance to
view and lighting changes, which is critical for establishing reliable
multi-view correspondences in stereo vision. Moreover, as shown
in Fig. 7, diffuse and normal maps produce feature points that cover
the object surface more completely, leading to a higher-quality mesh
than using either set of maps alone.
Next, we refine the rough shape with details in the multi-view

normal maps to obtain the final geometry. First, a remeshing is per-
formed to approximately match the vertex density with the normal
map resolution. Then, for each vertex, we select an un-occluded
view with the smallest angle between the view direction and the
current normal; the normal is updated with the value in the normal
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Fig. 7. The point cloud computed with multi-view stereo, using diffuse maps
(left) / normal maps (center) generated by our neural network. Combining
both point clouds result in amore complete coverage over the object surfaces
(right).

map from the corresponding view, at the projected 2D location of
the current vertex. Finally, the position of each vertex is refined
with the new normal using [Nehab et al. 2005]. The procedure is re-
peated twice in our experiments. We find that the above closest-view
strategy works well in experiments, though advanced techniques
(e.g., [Bi et al. 2017]) can also be adopted.

8 REFLECTANCE RECONSTRUCTION
Once a detailed shape is reconstructed, for each point on its surface,
we fit parameters of the GGX model (Eq. 2) along with a local frame
to the decoded lumitexels. Specifically, we perform nonlinear least
squares optimizations using L-BFGS-B [Morales and Nocedal 2011],
by minimizing the squared differences between the diffuse and
specular lumitexels computed with current estimates of parameters
(Eq. 2 & 4) and the corresponding predictions from our network. The
spatially-varying results, {ρd , ρs ,αx ,αy ,n, t}, are stored as texture
maps.
Note that we recompute the diffuse albedo here, as a more pre-

cise estimate of the position is available from the geometry result.
Moreover, our framework is not limited to fitting the GGX model.
Any BRDF model that preserves the reflectance features of interest
can be adopted.

9 IMPLEMENTATION DETAILS
We run our network on the measurements of each color channel
separately, to decode the diffuse / specular lumitexels in the R, G
and B channel. Then we fit the corresponding grayscale lumitexels
to obtain αx , αy , n and t, and discard the grayscale ρd / ρs . With the
remaining parameters fixed, the chromatic ρd and ρs are computed
by fitting the decoded RGB lumitexels using linear least squares.
For each view, we compute a binary mask of the object from

two back-lit photographs, one with the object and one without,
similar to [Gardner et al. 2003]. Occasional imperfections in the
results may be further refined with user assistance. After geometry
reconstruction, we build a uv-parameterization for the 3D mesh
using [Zhou et al. 2004].

10 RESULTS & DISCUSSIONS
We conduct experiments on a workstation with an Intel Core i9-
9900KCPU, 64GBmemory, and a GeForce GTX 2080 Ti video card. In
acquisition, we merge 3 low-dynamic-range (LDR) photographs of
the physical sample with different exposures into an HDR one using

bracketing. The typical capture time per view using 32 learned light-
ing patterns plus 1 back-lit pattern for mask computation (Sec. 9)
is about 15 seconds. This time scales linearly with respect to the
number of patterns. Please refer to the accompanying video for a
demonstration of the process. We rotate the turntable 24 times, each
with an angle of 2π

24 , to capture different views of the sample object.
The size of all photographs is about 10GB. Note that currently there
is only one camera in our setup, so the total acquisition time is (the
per-view capture time + the turntable rotation time) × the number
of views. We may further reduce it by deploying more cameras to
take the photographs from multiple views simultaneously.

The neural network training takes 70 hours to complete. One of
our main results is a deep neural network with 32 lighting patterns,
trained using general, anisotropic lumitexel samples. For this net-
work, the average error of the decoded normal is 3.8◦, and the error
of the decoded position is 18mm, both computed on the validation
set. For the reflectance and shape reconstruction of a sample object
in Fig. 8, the average decoding time is 15 minutes, and the SVBRDF
fitting time with our unoptimized code is 2 hours. All texture maps
have a resolution of 10242. The reconstruction results are rendered
with path tracing using NVIDIA OptiX.

We visualize the learned lighting patterns with anisotropic train-
ing samples (# = 32) / isotropic ones (# = 16) in Fig. 9. The corre-
sponding photographs of a physical sample under the former set
of lighting patterns are also shown: rich variations in the angular
domain are revealed under our optimized patterns, which is helpful
for the subsequent reflectance and shape reconstruction.

10.1 Results
We show examples of reflectance reconstruction in Fig. 10. For the
input lumitexels with considerable variations, our network clearly
decouples the diffuse and specular lumitexels, which even have a
slightly different parameterization than the input (Sec. 6.1). More-
over, reflectance results along with normals computed after BRDF
fitting are demonstrated, closely matching the ground-truths. For
fairness, the input lumitexels are not used in the training.
We demonstrate the effectiveness and generality of our frame-

work over 7 non-planar objects, which cover a wide variety of
materials and geometries. In Fig. 11, we validate our reconstruc-
tion results by qualitatively comparing with the photographs of the
physical samples under a novel lighting condition not used in the
acquisition: the main appearance features are well preserved in our
reconstructions, with quantitative errors reported in structural simi-
larity index (SSIM). We also show the rendering results under novel
lighting and view conditions. In Fig. 8, we show various texture
maps representing the reflectance results, along with the geometry
reconstruction results. Please refer to the accompanying video for
animated results.

10.2 Evaluations
We first evaluate the impact of the number of lighting patterns over
the decoding quality in Fig. 12. We plot L (Eq. 6) as a function of
the pattern number. As more patterns are used, the decoding error
L decreases. This is because more information about the reflectance
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Fig. 8. Reflectance and shape modeling results. Each normal is added with (1, 1, 1) and then divided by 2 to fit to the range of [0, 1]3 for visualization. The
tangents are visualized in the same way. For roughnesses, αx /αy are visualized in the red / green channel.
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Fig. 9. Different lighting patterns. From the top row to the bottom: the photographs of a physical sample lit with the corresponding lighting patterns in the
second row, our patterns learned from anisotropic training samples (# = 32), our patterns from isotropic samples (# = 16), and the patterns using randomly
sampled spherical Gaussians / Gabor noise (# = 32). Only a subset of all patterns are shown due to the limited space.

and shape is measured and passed down to the decoder, which
makes it possible to produce a more accurate output.
Next, we evaluate the effectiveness of our learned patterns (#

= 32) against the same number of fixed ones. We compare with
two sets of patterns: one generated using spherical Gaussians with
randomly sampled means and standard deviations, the other using
Gabor noise with randomly sampled parameters [Lagae et al. 2009].
A visualization of the patterns can be found in Fig. 9. As shown in
Fig. 13, although the corresponding decoders are trained to adapt to
the fixed lighting patterns, the decoding quality is below ours, where
the lighting patterns (i.e., encoder) are optimized in conjunction
with the decoders.

Furthermore, we perform sensitivity tests on our network in
Fig. 14, by adding a Gaussian noise to each component of the en-
coding, with a zero mean and a standard deviation proportional to
the magnitude of the component, to simulate measurement noise /

factors not modeled. The results demonstrate that our decoders are
considerably robust to the measurement noise, which is explicitly
handled in the training process (Sec. 6.4).

Finally, we study the impact of the training data distribution over
the number of lighting patterns. Two networks, one trained with
anisotropic samples (#=32) and the other with isotropic samples
(#=16), are used to reconstruct the same physical object. As more
knowledge about the SVBRDF of interest is exploited in the train-
ing, the amount of information needed from the measurements
reduces, resulting in a decrease in the number of lighting patterns
for reconstructions of similar quality, as shown in Fig. 15.

11 LIMITATIONS & FUTURE WORK
Our work is subject to a number of limitations. We do not explicitly
model inter-reflections or self-shadowing for lumitexel reconstruc-
tion, similar to related work [Nam et al. 2018; Tunwattanapong
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Fig. 10. Reflectance reconstruction. Except for those marked as the input lumitexels, the odd row shows the specular lumitexels, and the even row is the
diffuse lumitexels. The normal is indicated as a yellow cross. Six examples (a)-(f) are shown. Note that the input lumitexels have a different parameterization
than the output specular / diffuse lumitexels (Sec. 6.1).
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Fig. 11. Validation results. For images from the top row to the bottom in each column: a photograph of the physical object, the rendering of our result captured
using learned lighting patterns (anisotropic training samples, # = 32), the rendering of our result with novel lighting and view conditions. The last row reports
quantitative errors of our results with respect to the photographs, measured in SSIM. Please refer to the accompanying video for animated results.

et al. 2013]. Following previous work [Kang et al. 2018], our frame-
work cannot faithfully recover lumitexels that substantially deviate

from training samples, due to the data-driven nature. Moreover, we
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Fig. 12. The impact of the number of lighting patterns over the decoding
quality. Top chart: the loss L as a function of the number of lighting patterns.
Bottom rows: the outputs from our networks, trained with different number
of patterns, for the rightmost input lumitexel.

Input Ground-Truth Ours Gaussians Gabor Noise

Fig. 13. The impact of different encoders over the decoding quality. The
decoded diffuse / specular lumitexels, using our network with learned light-
ing patterns and networks trained with fixed patterns of randomly sampled
spherical Gaussians / Gabor noise (cf. Fig. 9), are shown along with the
ground-truths.

cannot reconstruct details that are not observed from the sampled
views.

We hope that this work will inspire future research on the broader
topic of differentiable acquisition, to jointly and automatically

Input Ground-Truth κ = 0% κ = 5% κ = 10%

Fig. 14. The impact of the simulated measurement noise over our network
(anisotropic samples, # = 32). For each component η of the encoding result,
we add a Gaussian noise with a zero mean and a standard deviation of κ |η |.
The decoding results are shown in the right three columns.

(a) (b) (c) (d)

Fig. 15. The impact of the training data distribution over the number of
lighting patterns. The number can be reduced with more certainty about
the object appearance (e.g., isotropic reflectance), for comparable quality
reconstructions. The reconstruction results with 32 patterns (anisotropic
samples) are shown in (a) and (c), while those with 16 patterns (isotropic
samples) in (b) and (d).

optimize different components of the acquisition pipeline. It will also
be interesting to apply our framework to improve the physical effi-
ciency of existing setups (e.g., [Aittala et al. 2013; Tunwattanapong
et al. 2013]), as well as to guide the design of novel illumination-
multiplexing devices. Moreover, it will be intriguing to handle other
types of appearance like subsurface scattering.
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A GGX BRDF MODEL
The functions involved in the anisotropic GGX model are listed below:

DGGX(ωh;αx , αy ) =
1

παxαy [(
ωh ·t
αx )2 + (

ωh ·b
αy )2 + (ωh · n)2]2

,

F (ωi, ωh) = F0 + (1 − F0)(1 − ωi · ωh)
5,

GGGX(ωi, ωo;αx , αy ) = G(ωi;αx, αy)G(ωo;αx , αy ),
where

G(ω ;αx , αy ) =
2(ω · n)

(ω · n) +
√
[(ω · t)αx ]2 + [(ω · b)αy ]2 + (ω · n)2

.

Here t/b represents the tangent / binormal. For the Fresnel term F , we use
an index of refraction of 1.5 in all experiments.
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