
11 SUPPLEMENTARY MATERIAL

11.1 Details on Geometric Reconstruction
Once our approach convert the groups of input images
into feature maps, they are directly fed as input to existing
multi-view stereo techniques (be it COLMAP, NeuS or Neu-
ralangelo), with only minor modifications: the number of
channels of an input image is changed from 3 (RGB) to 12, to
match the dimension of our features. The objective function
stays the same as in respective reconstruction approaches.
Moreover, for methods based on inverse rendering such as
NeuS or Neuralangelo, we further modify their rendering
process to produce 12-channel output images, in order to
compute the loss against our input feature maps. This is
done by changing the output dimension of the final fully
connected layer in NeuS/Neuralangelo from 3 to 12.

11.2 Details on Appearance Reconstruction
After geometric reconstruction, we establish a uv-parame-
terization over object surfaces, and compute BRDF param-
eters at each valid texel via differentiable optimization.
While not being tied to any specific model, we adopt the
anisotropic GGX BRDF in this paper:

f(ωi;ωo,p) =
ρd
π
+

ρs
DGGX(ωh;αx, αy)F (ωi, ωh)GGGX(ωi, ωo;αx, αy)

4(ωi · np)(ωo · np)
.

Here ρd/ρs are the diffuse/specular albedo, αx/αy are the
roughness parameters, and ωh is the half vector. DGGX is
the microfacet distribution function, F is the Fresnel term
and GGGX accounts for shadowing/masking effects. The
BRDF model is defined in the local frame np/tp of p, where
np/tp are the normal and tangent, respectively.

To fit BRDF parameters for a particular texel, we first
project its corresponding 3D position to all visible views
to gather its image measurements. Next, we employ a 16D
latent vector to represent the BRDF parameters: a decoder
network is also trained to transform the latent vector to the
parameters (ρd, ρs, αx, αy,np, tp). These parameters will be
used to produce rendering results, whose difference with
the aforementioned image measurements is minimized. All
latent vectors and the corresponding decoder are jointly
optimized. Finally, we convert the latent vector at each
texel to anisotropic GGX BRDF parameters, and store them
in texture maps as the appearance result (as visualized
in Fig. 16).

11.3 Features Incorporating Correlated Factors
According to Tab. 1, diffuse albedos and normals are mostly
correlated with our learned features. Here we test the impact
of replacing part of our learned features with the predictions
of these highly correlated factors. Specifically, we encourage
our network to learn to explicitly predict the first 6D of
the output feature as diffuse albedo and normal, with the
following modified loss:

L = λ0L0 + λ1L1 + λ2L2 + λpLp + λregLreg,

where
Lreg = Ldiffuse + Lnormal.
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Fig. 16: Reconstructed SVBRDF parameters. For visualiza-
tion purpose, each tangent is added with (1, 1, 1) and then
divided by 2 to fit to the range of [0, 1]; the specular albedo
is re-scaled; and αx/αy are visualized in the red/green
channel.

We reserve the first 6 dimensions of the final feature for
diffuse and normal predictions, and leave the remaining
dimensions for data-learned features. Here Ldiffuse repre-
sents the mean squared error (MSE) between the first three
dimensions of the final feature and the ground-truth diffuse
albedo, while Lnormal is the MSE between the next three
dimensions of the final feature and the ground-truth normal.
We set λreg = 5 in our experiment.

We test the new features on reconstructing the geometry
of MATBALL. Its Chamfer distance increases from 5.13 (our
features) to 5.28 (new features). We find that while it is faster
to train the new features due to the extra regularization
term, the reconstruction quality is reduced, as the features
are not completely learned from data.




