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We propose the first visible-light tomography system for real-time acqui-
sition and reconstruction of general temporally-varying 3D phenomena.
Using a single high-speed camera, a high-performance LED array and opti-
cal fibers with a total length of 5 km, we build a novel acquisition setup with
no mechanical movements to simultaneously sample using 1,920 interleaved
sources and detectors with a complete 360◦ coverage. Next, we introduce
a novel differentiable framework to map both tomography acquisition and
reconstruction to a carefully designed autoencoder. This allows the joint and
automatic optimization of both processes in an end-to-end fashion, essen-
tially learning to physically compress and computationally decompress the
target information. Our framework can adapt to various factors, and trade
between capture speed and reconstruction quality. We achieve an acquisition
speed of up to 36.8 volumes per second at a spatial resolution of 32×128×128;
each volume is captured with as few as 8 images. The effectiveness of the
system is demonstrated on acquiring various dynamic scenes. Our results are
also validated with the reconstructions computed from the measurements
with one source on at a time, and compare favorably with state-of-the-art
techniques.

CCS Concepts: • Computing methodologies→ Volumetric models; •
Hardware→ Scanners.
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1 INTRODUCTION
Computed Tomography (CT) is a fundamental imaging technique
to obtain complete 3D structures from measurements of attenuated
lights along different lines across an object [Hsieh 2003]. It has
many important applications, including medical imaging, industrial
inspection, aviation security, and cultural heritage. The external
and internal structures revealed by CT considerably deepen our
understanding of the object.

While originally limited to scanning static scenes, it is of signifi-
cant scientific and practical value to extend CT to capture dynamic
3D structures/phenomena for mechanics/biology research, medical
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Fig. 1. Using our novel stationary prototype (center) with 1,920 visible-light
LEDs, 1,920 detectors and a single camera, we capture a 3D volume with
as few as 8 photographs under optimized lighting patterns in 27.2ms. This
performance allows us to acquire a variety of dynamic 3D scenes (Fig. 12).
The top-left diagram illustrates the acquisition process. Please refer to Sec. 5
for more details on the prototype.

diagnosis, etc. However, one key difficulty arises in the extension to
dynamic CT. In theory, CT requires a dense set of individual mea-
surements along different lines intersecting a scene to reconstruct a
single 3D volume. As the scene is changing temporally, this dense
set of measurements must be repeatedly acquired within a short
period of time to avoid ghosting artifacts and provide a sufficient
temporal resolution. This translates to a requirement of consider-
ably higher sampling capability beyond traditional work, making
dynamic CT extremely challenging.
Over the past decades, substantial research efforts have been

made towards this goal, but general dynamic CT remains difficult.
One idea is to exploit specific properties of certain dynamic phe-
nomena (e.g., periodic movements [Chen et al. 2011]); the number
of required measurements can be reduced at the cost of generality.
One can also capture a small set of the complete measurements, and
rely on additional priors to fill in the information gap [Chen et al.
2008b; Zang et al. 2020]. Another idea is to employ multiplexing
to turn on multiple sources at the same time; the exposure time
can be reduced, due to the increased emitted energy. Recently, fully
stationary geometry [Zhang et al. 2020] has been proposed to elimi-
nate the time-consuming mechanical movements as in traditional
CT [Hounsfield 1973]. Its sampling capability, however, is limited
by the cost and space for placing multiple sources and detectors.
In this paper, we propose the first visible-light tomography sys-

tem for real-time acquisition and reconstruction of general dynamic
3D phenomena. We first build a low-cost, stationary acquisition
setup with 1,920 sources and 1,920 detectors, which are interleaved
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with each other and evenly placed on a cylinder. A total of 3.6
million rays can be sampled without any mechanical movements.
The sources/sensors are connected via optical fibers to a high-
performance LED array (48,000 fps)/a single high-speed camera
(400 fps), respectively. This allows rapid, concurrent capture using
all detectors with multiple sources on.
Next, we map both tomography acquisition and reconstruction

to a carefully designed neural network. This allows the joint and
automatic optimization of both processes in an end-to-end fashion,
essentially learning to physically compress and computationally
decompress the target information. The capture process is mapped
to a linear fc (fully connected) layer, whose weights correspond to
the lighting patterns for illumination multiplexing in the acquisition
and can be automatically optimized in training. For reconstruction,
our network demultiplexes the measurements and then outputs a
final 3D volume via trainable filtered back projection (FBP). Similar
to existing work, we use random combinations of various volumetric
primitives as well as simulated 3D fluid sequences as training data.

We achieve an acquisition speed of 36.8 volumes per second at a
spatial resolution of 32×128×128; each volume is captured with as
few as 8 images. We also achieve a real-time reconstruction speed
of 38.5 volumes per second on an 8-GPU server. The effectiveness
of the system is demonstrated on 5 sequences of dynamic scenes.
These scenes are captured with different numbers of pre-optimized
lighting patterns, showing the flexibility of our framework to trade
between acquisition speed and reconstruction quality. Our results
are also validated with the reconstructions computed from the mea-
surements with one light on at a time (OLAT). We compare with
state-of-the-art techniques qualitatively and quantitatively, and eval-
uate the impact of various factors.

2 RELATED WORK
Belowwe review CT scanning geometry, acquisition and reconstruc-
tion with limited samples as well as multiplexed CT acquisition,
three classes of work mostly related to our paper. Interested readers
are referred to Hsieh [2003] for an excellent introduction on this
extensively studied field. While our focus is on CT, it is not the
only approach to reconstruct transparent/translucent objects with
visible light. Similar results could be obtained with other setups and
algorithms developed in computer graphics and vision (e.g., [Bem-
ana et al. 2022; Hullin et al. 2008; Ihrke et al. 2005; Trifonov et al.
2006]). Please refer to related surveys for an overview [Ihrke et al.
2010; Zhou et al. 2021].

2.1 CT Scanning Geometry
The sampling capability of CT scanning geometry has been steadily
increasing over time. Starting with a single source and detector in
the seminal work of Hounsfield [1973], CT geometry has evolved
from 2D parallel/fan beam to 3D cone beam (CBCT), which adds
more detectors along the z axis [Arai et al. 1999; Mozzo et al. 1998].
However, the sampling rate of CBCT decreases when away from the
sample plane, leading to inferior reconstructions along the z axis.
This motivates inverse-geometry volumetric CT (IGCT) [Schmidt
et al. 2004], which improves the sampling with more sources added
to the z axis as well. Since the sampling coverage is incomplete, all

the above work including their modern variants [De Man et al. 2016;
Kim et al. 2021; Zhang et al. 2021] require mechanical movements
to finish one scan.

Recently, fully stationary geometry [Schwoebel et al. 2014; Spronk
2021; Yao et al. 2021] are proposed, with linearly [Zhang et al. 2020]
or helically interleaved sources and detectors [Chen et al. 2014].
However, due to the space conflict, only a limited number of sources
and detectors can be put in place, leading to an undesired sparser
sampling, compared with the counterparts with mechanical move-
ments. In addition, since the placement of sources and detectors
are derived from traditional scanning trajectories, the possibility of
more efficient placement is not explored.
While vanilla CT employs X-ray, visible light is often used in

computer graphics and vision for reconstructing phenomena like
flames [Hasinoff and Kutulakos 2007; Ihrke and Magnor 2004] and
fluids [Atcheson et al. 2008; Eckert et al. 2018]. The work here shares
similar weaknesses with their X-ray counterparts, including "the
small number of view points/projection images due to constraints in
the hardware setup (e.g. cost of the cameras and space limitations)."
as mentioned in Zang et al. [2020].
In comparison, our stationary setup is designed to achieve con-

current dense sampling capability with 1,920 sources and 1,920
detectors. Please refer Fig. 4 and 3 for a visualization. We tackle the
challenge of cost and space limit, by using optical fibers to route
the light from an LED array to the acquisition region and finally to
a single camera.

2.2 Acquisition & Reconstruction with Limited Samples
Traditional CT reconstruction algorithms can be divided into ana-
lytical [Feldkamp et al. 1984] and algebraic methods [Gordon et al.
1970], usually taking as input a dense set of measurements.

For scenes with specific properties, dynamic CT can be achieved
with limited samples. For periodic movements, one can scan dif-
ferent subparts at several cycles and assemble them as an effective
fast scan in one cycle. The idea is successfully applied to imaging
cardiac [Chen et al. 2011] and breathing motions [Sonke et al. 2005].
For general scenes, a common idea is to capture only a small

set of the complete measurements and fill in the information gap
with additional priors. There are two main classes based on the
distribution of samples: limited angle [Anirudh et al. 2018; Huang
et al. 2017] and sparse view [Chen et al. 2008b] reconstruction.
Zang et. al [2018] design a low-discrepancy view-sampling strategy
to acquire slowly deforming objects. Various forms of priors are
proposed, including total variance (TV) [Huang et al. 2013], temporal
coherence [Zang et al. 2019], subspaces spanned by different basis
functions [Hasinoff and Kutulakos 2007; Ihrke and Magnor 2004],
and spatial compactness [Atcheson et al. 2008].

Recently, deep learning is applied to build the reconstruction prior
from data. Jin et al. [2017] train a neural network for reconstruction
in an end-to-end fashion. Wang and Liu [2020] combine the FBP
algorithm with a neural network to improve its generalization. A
deep sinogram prediction module is proposed in Zang et al. [2021] to
in-paint missing samples. Rückert et al. [2022] develop a hierarchical
neural rendering pipeline for tomography reconstruction.
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While our approach is also based on limited samples, we jointly
optimize the acquisition along with reconstruction, to fully exploit
the sampling capability of our setup.

2.3 Multiplexed CT Acquisition
Zhang et al. [2010; 2008] applyHadamardmultiplexing to the sources
to decrease the exposure time of each image. It is not clear how to
further reduce the required number of image, which is the same
of the number of sources. While learned illumination multiplexing
has made a considerable success in other contexts (e.g., reflectance
acquisition [Kang et al. 2018]), it is challenging to apply the idea to
CT due to the huge domain gap. In comparison, we automatically
learn a compressive multiplexed scheme along with a corresponding
CT reconstruction algorithm, using a highly tight budget on the
number of measurements.

3 OVERVIEW
We build an acquisition setup with multiple interleaved sources
and detectors on a cylinder, which are connected to an LED array
and a camera via optical fibers, respectively. To capture a dynamic
scene, we place it around the center of the cylinder. Pre-optimized
lighting patterns (whose number is denoted as #) are cast from the
LED array to all sources simultaneously, resulting in a dense set of
rays that pass through the scene. The detectors pick up the rays
and direct them to a common plane, where they are captured by
the synchronized camera and then extracted as measurements. The
measurements corresponding to lighting patterns are fed to our
network for reconstructing a single 3D volume. Please refer to Fig. 2
for a visualization of our pipeline.
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Fig. 2. Acquisition pipeline. Pre-optimized lighting patterns are cast by LEDs
to illuminate the scene via optical fibers. Attenuated lights are picked up by
the detectors and directed via optical fibers to a detector array. Measure-
ments are extracted from images taken at the array. The measurements from
all # images are sent to our network to reconstruct a 3D density volume.

4 PRELIMINARIES

4.1 Assumptions
We assume that the scene remains static in the duration for captur-
ing every # photographs. To support general dynamic scenes, no
temporal coherence is exploited and each 3D volume is indepen-
dently reconstructed. Similar to the majority of existing work, we
do not consider refractions or reflections. In addition, only a single
gray-scale channel is used throughout the paper.

4.2 Tomographic Imaging Model
We use a long vector x to represent a discrete 3D density volume
with a spatial resolution of 32×128×128. If we set the source with
an index of 𝑗 to the maximum power, the corresponding readout
value from the detector with an index of 𝑖 is denoted as I𝑖 𝑗 . The ratio
between I𝑖 𝑗 and the counterpart Ĩ𝑖 𝑗 on an empty scene is related
to the accumulated density D𝑖 𝑗 along the path from source 𝑗 to
detector 𝑖 as:

D𝑖 𝑗 = − log(I𝑖 𝑗/Ĩ𝑖 𝑗 ) . (1)
The collection of the accumulated densities at all source-detector
pairs is called a sinogram, and can be stored in a 1920×1920 matrix
D.

In CT literature,D𝑖 𝑗 is computed as a line integral over the density
volume x, which is called the Radon transform projection model.
We use a matrix K to represent this procedure:

D = Reshape(K · x) . (2)

Here Reshape() reorganizes a vector to a matrix.
Combining Eq. 1 and 2, we derive the following relationship

between detector readout values and the density volume:

I = exp(−Reshape(K · x)) ⊙ Ĩ. (3)

Here ⊙ represents element-wise product between two matrices, I
is a 1920×1920 matrix called a multi-view CT image, and each
column of I is referred to as a CT image.
Below we describe 𝑠 − 𝜙 parameterization of 2D lines. For a 2D

line, 𝑠 is its distance to the origin, and 𝜙 is the angle between the
x-axis and another line orthogonal to the current one and through
the origin, in the range of [−𝜋, 𝜋). Every 2D line can be represented
as a point in the 𝑠 − 𝜙 plane, which is referred to as the projection
space. For a line in the 3D space, it can be parameterized by two
angles and two distances, resulting in a 4D projection space. Please
refer to Fig. 3 for a visualization.

4.3 Multiplexing & FBP-based Reconstruction
We represent a lighting pattern as a vector p in R1920, in which
p𝑗 stores the intensity set to the source with an index of 𝑗 . Due to
the linearity in the physical domain, the readouts of all detectors
under a lighting pattern p can be computed as:

m = I · p = (exp(−Reshape(K · x)) ⊙ Ĩ) · p. (4)

Here m is a multiplexed CT image, represented as a vector in
R1920. As we use multiple lighting patterns P to acquire a volume,
the collection of all measurements M related to this volume can be
expressed as:

M = I · P = (exp(−Reshape(K · x)) ⊙ Ĩ) · P, (5)

whereM and P are both 1920 × # matrices.
To reconstruct a density volume x from a sinogram D, FBP/FDK

(Feldkamp, Davis and Kress [1984]) algorithms are widely used in
industry as:

x̃ = B𝑓 (D), (6)
where 𝑓 is a filtering function, and B is the back projection operation.
More details can be found in Hsieh [2003].
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Fig. 3. Different scanning geometries and their concurrent sampling capa-
bilities on 𝑠 − 𝜙 plane. For each pair of images, we draw representatives
among all concurrent rays for a specific type of scanning geometry on the
left. All sampled rays in the 𝑠 −𝜙 plane are marked as red dots. The blue dot
represents a source, and green a detector. For a fair comparison, we use the
same source/detector spacing. The geometry of Zhang et al. [2020] is shown
in (c). According to the method in Luo et al. [2021], the area covered on the
𝑠 −𝜙 plane by sampled rays in (c) and (d) are 4,318 and 43,200(degree · mm) ,
respectively.

5 ACQUISITION PROTOTYPE

5.1 Design Decisions
Our goal is to build a setup with a high sampling capability within a
short period of time to support dynamic capture. The setup should
be stationary, as the mechanical movement limits the temporal reso-
lution of the reconstructions. Moreover, it is desirable to sample the
projection space as densely and as completely as possible, which
is directly related to the final quality (Sec. 4.2). Through trial-and-
error, we examine and compare the sampling capabilities of different
geometries (see Fig. 3 for a visualization of 2D examples). We find
that an interleaved layout of many sources and detectors on a cylin-
der around the target allows a dense and complete sampling of the
projection space, leading to a 10x increase in coverage compared
with one state-of-the-art work [Zhang et al. 2020].

However, it is not straightforward to directly implement the above
design with LEDs as sources and cameras as detectors, due to the
cost and space limit. Therefore, we employ light routing [Pereira
et al. 2014] to flexibly direct the light emitted by an LED array to the
desired locations on the cylinder, and similarly direct the attenuated
light collected along various directions to a common plane to be
captured by a single camera, with the help of optical fibers. For
convenience of installation, we group every 10×8 sources/detectors
together as an LED/detector/acquisition module, made of laser-cut
acrylic. Please refer to Fig. 1 and 4 for illustration.

5.2 Prototype Description
The intensity of each LED in the array is independently controlled
by custom designed circuits with Pulse Width Modulation (PWM).
The binary lighting pattern projection speed is 48,000 fps. As shown
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Fig. 5. Calibrations. (a) The top-view of a calibration hemisphere in the cen-
ter of the valid volume, reflecting all sources. (b) The photo of the detector
array captured by our camera. The red crosses indicate the calibrated cen-
ters of each optical fiber. (c) A visualization of calibrated Ĩ. Each row/column
corresponds to a source/detector, respectively. (d) A visualization of general-
ized source and detector. (e) Representatives of calibrated response curves
of generalized detectors.

in Fig. 4, the emitted light is routed from an LED module to a corre-
sponding acquisition module as effective sources. The remaining
half holes on the acquisition module serve as detectors. They collect
lights and direct via optical fibers to a detector array on a common
plane for acquisition. We use a 3MP machine vision camera Basler
boA1936-400cm to capture the plane, with a maximum speed of
400 fps. The camera is precisely synchronized with the light casting
of the LED array using our circuits.

We use Mitsubishi Eska MEGA SH4001 optical fibers, with a fiber
diameter of 1mm and a jacket diameter of 2.2mm. The inner mate-
rial is plastic designed for visible light routing. As aforementioned,
we design 3 types of modules (LED/detector/acquisition), to ease
the installation of optical fibers. A number of holes are pre-cut from
the modules, and the diameter of each hole is slightly larger than
an optical fiber. We first use a professional optical fiber cleaver to
cut the optical fibers with a total length of about 5 km into 1920×2
segments. Next, we apply LOCTITE 406 glue to fit each end of a
segment to a hole in a module. The acquisition module has 10×16
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holes. The odd columns are for the fibers from an LED module,
and the remaining for those from a detector module. It takes about
100 hours for a graduate student to finish the process. We place 24
acquisition modules to form a cylinder-like geometry with a radius
of 230mm. This ends up with 24×10×8=1,920 sources and detectors
around a designated valid volume of 32mm×128mm×128mm.

5.3 Calibration
Extrinsics of Acquisition Modules. We first mount an extra camera

below the detector array to take a top view of the acquisition region
(Fig. 5-a). Then a black calibration hemisphere with a known radius
is placed in the center of the valid volume. Next, each LED is turned
on one at a time for the extra camera to capture the reflection of
the corresponding source on the hemisphere. The 2D location of
the reflected source is estimated with sub-pixel accuracy by fitting
a Gaussian. Finally, we jointly optimize the center of the calibra-
tion hemisphere and the extrinsic parameters of each acquisition
module, by minimizing the reprojection errors. The extrinsic param-
eters of individual sources and detectors are computed using the
corresponding transformations relative to an acquisition module,
according to our 3D design.

Measurement Extraction from the Detector Array. First, our camera
captures an image with all LEDs on. Then we extract filtered con-
tours of fibers from the image after binarization. We take a 30×30
patch from the original image around the center of each contour
and fit a 2D Gaussian. Finally, the measurement of each detector is
computed as the product of the corresponding image patch and the
pre-fit Gaussian. Please refer to Fig. 5 for a visualization.

Optical Fiber Characteristics. Technically, we need to know how
the light intensity is changed after transmitting through each seg-
ment of optical fiber. To simplify the calibration, we first view the
LED array, LED modules, sources on acquisition modules and op-
tical fibers between the latter two as generalized sources, and the
remaining parts as generalized detectors (Fig. 5-d). Note that gen-
eralized sources are linear with respect to a lighting pattern, due
to our PWM control mechanism. So we only need to measure the
characteristics of the fibers in the generalized detectors. To do so,
we place an additional light, whose intensity can be continuously
adjusted, in the valid volume. Then, we capture with the light set to
different intensities to obtain the response curve for each detector
(Fig. 5-e).

Calibrating Ĩ. For the 𝑗-th column of Ĩ, we turn on the 𝑗-th LED
and fill in the extracted measurements from all detectors, after
corrected with the corresponding response curves. We loop over all
LEDs to complete Ĩ (Fig. 5-c).

Point Spread Function. We compute 2D point spread functions of
our prototype according to a method similar to Chen et al. [2008a].
The estimated full width at half maximum (FWHM) for the horizon-
tal and vertical directions are 1.3mm and 1.8mm, respectively.

6 ACQUISITION & RECONSTRUCTION ALGORITHM

6.1 Design Decisions
A naïve way to acquire with our prototype is to loop over all sources
with OLAT, to obtain the complete multi-view CT image I. However,
this is highly inefficient, because (1) the power of a single source
is limited, which results in a long exposure, and (2) the number of
sources is large. To capture dynamic scenes, this approach has to sac-
rifice either sampling density or coverage for acquisition speed [Arai
et al. 1999; Mohan et al. 2015; Mozzo et al. 1998; Zang et al. 2018],
leading to suboptimal results. Multiplexed acquisition addresses the
issue of long exposure by programming the intensities of multiple
sources simultaneously. However, existing work is hand-crafted and
separately considers acquisition and reconstruction; the number of
photographs is also the same as the number of sources. As a result,
the sampling capability of our prototype is not fully exploited.
Therefore, we propose a novel differentiable framework to map

CT acquisition and reconstruction to a deep neural network, to
allow joint and automatic optimization of both processes. Here
one straightforward way to perform reconstruction is to train from
scratch an end-to-end network, which transforms the multiplexed
measurements into a 3D volume. But it leads to unsatisfactory results
(Fig. 13), due to the huge input/output domain gap. To tackle this
issue, we incorporate a differentiable 3D-FBP network as a backend;
doing so harnesses the excellent existing domain knowledge to
prevent overfitting the training data and generalize better to novel
cases [Wang and Liu 2020]. We also carefully design an efficient
network architecture to exploit the coherence in measured data.

6.2 Architecture
The input to our network is a multi-view CT image I of 1920×1920
(which is never directly acquired). The output is a 3D density volume
of 32×128×128.
The network consists of three parts. First, an encoder network

probes the physical multi-view CT image with optimized light-
ing patterns, resulting in multiplexed CT images. Next, these raw
measurements are converted to a sinogram via a decoder network.
Finally, we perform volumetric reconstruction from the sinogram.
Please refer to Fig. 10 for an illustration. The three parts will be
described in details below (Sec. 6.3-6.5).

6.3 Encoder
The first part of our network contains a linear fc layer, whose
weights correspond to the lighting patterns used during acquisition.
The patterns help probe the physical multi-view CT images into
multiplexed CT images, according to Eq. 5.

6.4 Decoder
This part of the network transforms the multiplexed CT images to
a sinogram. Before introducing the details, we first observe that the
detector measurements are similar with respect to different sources
on a single acquisitionmodule, due to the spatial proximity (see Fig. 8
for an example). This motivates our network design, which divides
the entire job to 24 tasks on a per-module basis as follows.
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Specifically, we partition the sinogram D into 24 sub-sinograms,
each of which corresponds to the pairs between a source on a par-
ticular acquisition module and one of all detectors in the device.
Next, we pretrain 24 autoencoders for each of the modules. Here an
autoencoder takes the multi-view CT images as input, and outputs a
sub-sinogram corresponding to a particular module. After pretrain-
ing, we take the decoder out and denote it as a DecodeNet. Finally,
we stack a network on top of 24 DecodeNets, which correspond
to 24 acquisition modules in our prototype. This network is de-
noted as TransferNet, whose job is to convert the input multiplexed
CT images into the appropriate latent codes for each DecodeNet.
To obtain a complete sinogram, we simply concatenate all 24 out-
put sub-sinograms from all DecodeNets. A graphical illustration is
shown in Fig. 10.

6.5 Volumetric Reconstruction
Finally, we pass the decoded sinogram to a differentiable 3D-FBPNet,
similar to Wang and Liu [2020], to reconstruct a 3D volume. The
3D-FBPNet contains a 3D FBP module following a 6-layer 3D U-Net
network. The filtering weights and back projection weights in 3D
FBP module are trainable. Note that other networks that compute a
3D volume out of a sinogram can also be plugged in here.

6.6 Loss Function
Our loss function is defined as L(x, x̃, P) = Lvol (x, x̃) + Lpat (P). Its
two terms are defined as:

Lvol (x, x̃) = ∥x − x̃∥22 + 𝜆vggLvgg (x, x̃), (7)
Lpat (P) = 𝜆barLbar (P) + 𝜆binLbin (P). (8)

Here Lvol measures the reconstruction error of predicted density
volume x̃. Its first part measures the difference between network out-
put x̃ and the label x. The second partLvgg computes the perceptual
reconstruction quality [Johnson et al. 2016] as:

Lvgg (x, x̃) =
4∑︁

𝑖=1
∥VGG𝑖 (Φ(x)) − VGG𝑖 (Φ(𝑥))∥1, (9)

where VGG𝑖 computes the output from the 𝑖-th layer of VGG16 Net,

and Φ(x) = log(1 + 𝜇x)
log(1 + 𝜇) , which is a transform to ensure better data

alignment with VGG16 [Santos et al. 2020]. In all experiments, we
set 𝜆vgg = 10−5 and 𝜇 = 5000.
Next, Lpat is a loss to constrain the optimization of lighting

patterns. Here Lbar (P)=
∑[tanh(𝜖 (P𝑖 𝑗 − 1))− tanh(𝜖 (P𝑖 𝑗 + 1))]. It

acts as a barrier function to ensure the weights in the encoder, which
correspond to the lighting patterns, to be in the range of [−1, 1]
for physical realization. The final term Lbin (P) = −∑ |Pij |, which
encourages each LED intensity to be as close to 1 or -1 as possible,
since our device can project binary patterns more rapidly than, e.g.,
8-bit patterns. In all experiments, we use 𝜆bar = 1/#𝑤 , 𝜆bin=0.1 and
𝜖=50, where #𝑤 is the number of weights in the first fc layer of our
encoder.

Note that since the intensities of lighting patterns are constrained
to [−1, 1], we can convert each such pattern into two for physical

realization: one with all positive values, and the other with all nega-
tive values with signs flipped. Throughout this paper, we report the
number of physical lighting patterns for consistency.

6.7 Training
According to Sec. 6.4, we first pretrain 24 autoencoders for each
of the acquisition modules. Next, we pretrain TransferNet using
the latent outputs of the pretrained encoders in the previous step
as labels. Finally, we jointly train TransferNet, DecodeNet and 3D-
FBPNet in an end-to-end fashion.

Our training dataset is synthetic and contains two types of data.
We first follow existing work [Ding et al. 2019; Häggström et al.
2019; Hauptmann et al. 2019; Xu et al. 2018] to randomly gener-
ate combinations of predefined primitives with different locations,
sizes and orientations (ellipsoids, cubes, spheres, ellipsoidal shells,
cubic shells and spherical shells). The density of each primitive is
in the range of (0, 0.5]. To further increase the diversity, we add
simulated sequences of fluid with a resolution of 256 × 256 × 256
by Mantaflow [Thuerey and Pfaff 2018]. Random, non-empty sub-
volumes of 32 × 128 × 128 are cropped to fit to our valid volume
(refer to Fig. 9 for examples). Next, Pytorch3D [Ravi et al. 2020] is
employed to accumulate density along rays of each source-detector
pair to synthesize a sinogram (Eq. 2). Finally, we compute multi-view
CT images with the help of calibrated Ĩ according to Eq. 3. Note
that our approach is fully data-driven, and thus can switch to other
training data depending on applications.

To increase robustness in physical experiments, we multiply each
of our simulated measurement with a relative Gaussian noise (𝜇 = 1,
𝜎 = 10%) during training, to model noise/effects not accounted in our
pipeline. Note that 𝜎 is determined from an experiment that com-
pares physical measurements with simulated ones under different
lighting patterns.

7 RESULTS & DISCUSSIONS
All computation experiments are conducted on a server with dual
AMDEPYC 7763 CPUs, 768GBDDR4memory and 8NVIDIAGeForce
RTX 4090 GPUs. We implement our network with PyTorch and use
Adam optimizer for training. PyTorch3D [Ravi et al. 2020] is em-
ployed to synthesize multi-view CT images. The learning rate is
10−4, and the batch size is 1. The total training time for the network
is 43 hours.
During acquisition, the exposure time for taking a photograph

under one lighting pattern is 2.5ms. Currently, our unoptimized
pipeline requires an additional 0.9ms per pattern to drive both the
camera and LED array from PC, resulting in 36.8/8.2 volumes per
second using 8/36 lighting patterns, respectively. This extra time can
be avoided by driving the entire acquisition directly from our circuit
board, whichwill be equivalent to 400 images/50 volumes per second
using 8 lighting patterns. Note that this reaches the maximum speed
of our camera. The reconstruction time for a volume is 0.026 s for
the number of light patterns ranging from 8 to 36.

We demonstrate the sequences of reconstructed 3D volumes of 5
real dynamic scenes. Selected frames are shown in Fig. 12. Please
refer to the accompanying video for animations. All results are
rendered with path tracing in Blender. For the erupting vapor scene
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that is quickly changing, we use #=8 lighting patterns for acquisition.
For the remaining scenes that change more slowly, we set # to 36 for
a better reconstruction quality. In Fig. 8, we show the multiplexed
CT images measured under different lighting patterns. It is clear
that multiplexed patterns make better use of the sampling capability
of our device, compared with a single light source.

Note that our scanning geometry prioritizes a dense and complete
sampling of the projection space over spatial resolution. This differs
from previous work [Atcheson et al. 2008; Zang et al. 2020], which
typically has a higher spatial resolution and a lower angular one. In
reconstruction, our approach relies less on prior information and
more on measurements carefully sampled in the projection space,
towards the goal of general CT acquisition.

7.1 Comparison
In Fig. 7, we compare our approach with related technique on acquir-
ing and reconstructing rapidly varying vapor. First, OLAT cannot
produce a plausible result, due to the extremely long time to finish
one scan, during which the scene has already changed. Traditional
multiplexing [Zhang et al. 2008] cannot capture fast enough either,
as 3840 photographs are needed. For the state-of-the-art high-speed
capture technique of Zang et al. [2021], sampling completeness is
sacrificed for acquisition speed. The limited angle case employs 8
sources on a single acquisition module, corresponding to an angular
coverage of approximately 15◦; the sparse view case uses 8 sources
evenly distributed over all 24 acquisition modules. Due to the sub-
stantially longer exposure time (caused by the limited power of a
single LED) and the limited input information, their reconstructions
are not as good as ours using an equal number of input photographs.
Our system is the only one that can acquire this dynamic phenome-
non and reconstruct a 3D volume that resembles the photograph
using as few as 8 lighting patterns per volume, which corresponds
to a capture time of 0.027 s only.

7.2 Evaluations
Here we mainly focus on analyzing the effectiveness of our current
system, as both the hardware and software are jointly optimized
towards reconstruction quality. It will be interesting future work to
conduct experiments using alternative components, e.g. SART [An-
dersen and Kak 1984], from existing literature.
We first evaluate the impact of the number of lighting patterns

over the reconstruction quality. In Fig. 6, we plot the volumetric
reconstruction error Lvol over a test dataset generated with the
method in Sec. 6.7, as a function of #, the lighting pattern number.
We also plot the time for capturing a single volume as a function
of #. As expected, while the reconstruction error decreases with #
(i.e., more captured information), the acquisition time increases. Our
framework offers the flexibility to trade between quality and speed,
to cater the demands in different applications. In Fig. 11, we test
our networks trained with different # on reconstructing a synthetic
and a real static scene. Please refer to the figure for qualitative and
quantitative evaluations.

Next, we evaluate the impact of different lighting patterns in Fig. 13.
We compare with patterns generated with Gaussian noise and ran-
domly selected rows of a Hadamard matrix. In experiments, we
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Fig. 6. Volumetric reconstruction error Lvol and acquisition time per volume
as a function of the number of lighting patterns #. The horizontal axis is
spaced on a log scale.

fix these alternative patterns and train corresponding networks to
adapt to them. At the same number of lighting patterns, we achieve
a higher reconstruction quality compared with hand-crafted ones,
as our patterns are optimized in conjunction with the reconstruction
network towards optimal quality, which fully exploits the capabili-
ties of our prototype.
In the same figure, our network is compared with a naïvely de-

signed end-to-end network, a 3D version of Häggström [2019],
which directly maps the measurements to the 3D volume. Their
result is not satisfactory. We believe there are two main reasons:
(1) the network does not explicitly make use of the coherence with
respect to source in a sub-sinogram (Sec. 6.4); (2) existing domain
knowledge is not exploited (Sec.6.2).
We evaluate the effect of our trainable 3D-FBPNet in Fig. 13.

There are two benefits [Wang and Liu 2020]. First, compared with
a pure neural network, 3D-FBPNet does not overfit to the training
data. Second, the trainable filter and back projection weights make
it possible to further fine-tune the performance. As a result, we
achieve a higher reconstruction quality over the vanilla 3D-FBP.

Moreover, we evaluate the impact of the loss term Lbin (Fig. 13).
We train a network without this term to solely focus on volumetric
reconstruction error. This results in a more varied distribution of
learned source intensities. The reconstruction is improved, despite a
longer exposure time due to the longer time it takes for our device to
project non-binary patterns. End users of our system can choose to
go with binary or non-binary patterns, depending on the changing
speed of the scene of interest and the desired reconstruction quality.
Finally, we test if a NeRF-like algorithm (IntraTomo [Zang et al.

2021]) can work well directly on our measurements in the same
figure. We employ a 3D version of IntraTomo to minimize the dif-
ferences between the measurements computed from the current
estimation of the volume and its ground-truth, under our lighting
patterns. The result is less satisfactory, due to the considerably
low number of constraints (i.e., measurements). In comparison, our
network implicitly learns a data prior for better reconstructions.

8 LIMITATIONS & FUTURE WORK
Unlike X-ray CT in which attenuation is the main phenomenon, our
visible-light system is more influenced by reflections and refractions.
It will be interesting to explicitly model these optical effects, in order
to acquire interesting fluid motions. In addition, the physical light
transport deviates from our single-channel assumption to some
degree: our LEDs have a broad spectrum, and the optical fibers
transfer the light at different wavelengths differently. We expect that
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the deviation will be reduced when replacing with a narrow-band
LEDs. Moreover, we independently reconstruct each 3D volume in
this paper. The quality might be improved, by combining existing
work that exploits temporal coherence. It will be also intriguing to
apply latest work on neural representation [Rückert et al. 2022] to
fine-tune the result against the measurements for a higher quality.
And our reconstruction on the erupting vapor suggests that our
prototype might be useful to validate fluid simulation techniques.
Last but not least, we are excited to push the idea towards the first
general dynamic X-ray CT.
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Photo Ours (0.027 s) OLAT (2,401.7 s) Hadamard (13.1 s) Limited Angle (10.0 s) Sparse View (10.0 s)

Fig. 7. Comparison of different techniques on a dynamic scene. For each approach, we show the rendering result of the reconstructed volume, visualize
3 axis-aligned slices of the volume and report the time for capturing one 3D volume on top. From the left to right: photograph (with the valid volume
roughly marked in yellow), our network (# = 8), OLAT (# = 1920), Hadamard multiplexing [Zhang et al. 2008] (# = 3840), and the limited angle/sparse view
approach [Zang et al. 2021] (# = 8).

OLAT Ours Hadamard

Fig. 8. Visualization of different lighting patterns and corresponding mea-
surements of the same static scene. For each pair of columns, the left one
visualizes lighting patterns and the right is corresponding measurements.
From the left to right: OLAT patterns, ours and Hadamard patterns. Only a
subset of all lighting patterns are shown due to the space limit. For OLAT
patterns, the sources in the center three rows are spatially adjacent. The
intensities of measurements are scaled for a better visualization.

Fig. 9. Examples of synthetic training data. Each column shows a randomly
generated training sample. The first row is an XY slice of the volume. The
second row shows the CT image with respect to a source 𝑗 , simulated with
calibrated parameters of our device. The corresponding Ĩ𝑗 is in the third row.
The first 4 columns are generated from random combinations of volumetric
primitives, and the remaining columns are from fluid simulations.
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Fig. 10. Network architecture. Our autoencoder consists of three parts.
The encoder is a simple linear fc layer, which maps the lighting patterns
during acquisition. Then a neural network transforms the multiplexed CT
image to a corresponding sinogram. Finally, a differentiable 3D-FBP network
reconstructs a 3D volume from the sinogram. Please refer to Sec. 6.2 for
details.

G.T./Photo # = 192 # = 50 # = 8 OLAT

37.04/0.92 35.50/0.89 33.13/0.83 36.78/0.92

Fig. 11. Impact of the number of lighting patterns over reconstruction qual-
ity. From the left to right: a slice of simulated flow data/a photograph,
reconstruction results from our networks with different numbers of lighting
patterns #, and the reconstructions from OLAT measurements with vanilla
3D FBP.Quantitative errors in PSNR/SSIM are reported at the bottom-right
corner of corresponding images.
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Fig. 12. Reconstructions of different dynamic scenes. We visualize a subset of the reconstructed sequences of 5 dynamic scenes: erupting vapor (after putting
dry ice in the water), soaking napkin, in-/de-flating balloon, moving dandelion and falling powder. Note that in the 4th row, we cut open the reconstructed
volume and render only half of it to better reveal the inner structures of the dandelion. In addition to the visualization of the reconstructed volume, we show
the photograph of the scene at the same time on the top-left corner, 3 slices of the reconstructed volume on the right, and the time stamp on the bottom-right
corner.

G.T./Photo Ours Ours w/o Lbin Vanilla 3D FBP Hadamard Gaussian End-to-end OLAT IntraTomo
0.12 s

34.07/0.94

0.93 s

35.72/0.96

0.12 s

32.94/0.94

0.12 s

33.84/0.93

0.48 s

33.80/0.93

0.12 s

28.90/0.87

2,401.7 s

35.51/0.92

0.12 s

33.10/0.94

Fig. 13. Impact of various factors over reconstruction quality. Here all neural networks use 36 lighting patterns. The first row is a synthetic example, while the
second a physical scene. From the left to right: a slice of the ground-truth volume/a photograph, the results using our network, our network trained without
L𝑏𝑖𝑛 , our network with vanilla 3D FBP, our network with fixed, randomly selected Hadamard/Gaussian noise patterns, an end-to-end network [Häggström
et al. 2019], direct 3D FBP from OLAT measurments and a 3D version of IntraTomo [Zang et al. 2021]. The time to acquire a volume/quantitative errors
(PSNR/SSIM) are reported at the top and bottom-right of corresponding images, respectively.
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