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Abstract

Bidirectional texture functions (BTFs) represent the appearance of complex materials. Three major shortcomings

with BTFs are the bulky storage, the difficulty in editing and the lack of efficient rendering methods. To reduce

storage, many compression techniques have been applied to BTFs, but the results are difficult to edit. To facilitate

editing, analytical models have been fit, but at the cost of accuracy of representation for many materials. It becomes

even more challenging if efficient rendering is also needed. We introduce a high-quality general representation

that is, at once, compact, easily editable, and can be efficiently rendered. The representation is computed by

adopting the stagewise Lasso algorithm to search for a sparse set of analytical functions, whose weighted sum

approximates the input appearance data. We achieve compression rates comparable to a state-of-the-art BTF

compression method. We also demonstrate results in BTF editing and rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The bidirectional texture function (BTF) was introduced by
Dana et al. [DvGNK99] to capture the appearance of com-
plex materials. It is essentially a 6D function parameter-
ized by position, lighting direction as well as view direction.
BTFs can represent a wide range of materials, from sim-
ple plastic to carpeting, which has complex non-height-field
meso-structure and spatially varying optical properties. Vari-
ous effects like inter-reflection, self-shadowing and masking
are incorporated in the representation, which makes render-
ing using a BTF extremely realistic. However, in practice
there are three major shortcomings with BTFs: huge storage
requirements due to their high dimensional nature, the lack
of intuitive editing methods, and the challenge to efficiently
render them. Previous work has made significant progress in
removing one or the other limitation, but not all.

In comparison, many BRDFs can be well approximated
using analytical models [DRS07] with compact storage. The
parameters of these models usually have physical meanings
(e.g. controlling the specularity), which allows intuitive di-
rect manipulations. Moreover, many of these models offer
analytical importance sampling for efficient rendering in a

Monte-Carlo setting. Unfortunately, it has been known that
analytical BRDF models cannot faithfully represent BTF
data [MMS∗05].

What is missing for efficiently representing BTFs, is a
high-quality general parametric model, which is, at once,
compact, easily editable and can be efficiently rendered. In
this paper, we propose a Sparse Parametric Mixture Model
(SPMM) for general BTFs, in an effort to complete this
missing piece. Unlike previous work which fits just one an-
alytical BRDF model, we use a sparse linear combination of
rotated analytical BRDFs of different types to fit each BTF
texel. The resultant approximation error is small and coher-
ent, which can be further reduced with modest additional
space. Since we are using analytical models, we can rep-
resent specular materials beyond the angular resolution of
any data-driven representation. Furthermore, the sparseness
property gives us a small set of analytical BRDFs, which are
easily editable. We handle general BTFs, as our method does
not assume height-field, meso-structure geometry as some
previous work does (e.g. [MG09]). Please refer to Fig. 1 for
an illustration of our pipeline.

The key contribution of our paper is a compact, editable,
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Figure 1: A diagram of our pipeline. For each BTF texel, we

first compress it into our SPMM representation, consisting

of a sparse linear combination of rotated analytical BRDF

models. Next, we can perform various editing operations by

manipulating this representation. For example, we have nar-

rowed the lobe of Analytical Model 1 in the above figure. The

result is then rendered by summing the linear combination of

all analytical models. In the above example, we have added

a metallic look to the original material.

yet efficiently renderable, high-quality parametric represen-
tation for general 6D appearance data, which can be used to
represent BTFs analogous to the way analytical BRDF mod-
els are used to represent measured BRDF data. In addition,
we present the first algorithm to our knowledge to fit mul-
tiple, rotated analytical BRDFs of different types, based on
a recent advance in machine learning. This algorithm could
also be used in other challenging settings to express a signal
as a sparse linear combination of non-orthogonal parametric
basis functions, where the basis function types, the function
parameters, as well as the weights are all unknown.

2. Previous Work

The BTF has received a great deal of attention since it was
first introduced by Dana et al. [DvGNK99]. A comprehen-
sive survey of the acquisition, synthesis and rendering of
BTFs was presented by Müller et al. [MMS∗05], several
methods for compressing BTFs are described. One class of
methods is fitting analytical BRDF models such as Lafor-
tune lobes. The results have meaningful parameters for edit-
ing, and they are suitable for fast rendering. Unfortunately,

such methods are accurate representations only for mate-
rials with meso-scale geometry with very small variations
in height. Alternative methods use numerical compression
based on matrix factorization. While a high compression rate
is achieved, the results cannot be readily edited.

A subsequent survey by Filip and Haindl [FH09] includes
additional work on BTF: Ma et al. [MCT∗05] developed a
compact representation using PCA and parametric fitting of
Phong models on BTF data after a Laplacian transformation.
The result is suitable for level-of-detail (LOD) rendering,
but not for editing. Filip et al. [FCGH08] increased the nu-
merical compression efficiency by ignoring the perceptually
unimportant features of BTF data. Guthe et al [GMSK09]
proposed a perceptual metric, which can be applied to a va-
riety of compression techniques. Both methods are based on
numerical compression and thus do not produce directly ed-
itable results.

Recently, Ruiters and Klein [RK09] used L1-constrained
fitting to obtain a sparse set of numerical basis functions
for BTF compression. While they achieve a high compres-
sion rate, the numerical basis functions do not have phys-
ical meanings and cannot be directly edited. Havran et al.
[HFM10] decomposed the BTF data into multi-dimensional
conditional probability density functions, which are then en-
coded using vector quantization. Impressive levels of com-
pression are achieved. While excellent for importance sam-
pling in rendering, this representation again does not lend
itself to appearance editing.

Kautz et al. [KBD07] performed various operations di-
rectly on the raw BTF data to achieve interesting effects.
Since the large size of the raw BTF does not fit in mem-
ory, an out-of-core architecture is carefully-designed to effi-
ciently manage I/O data flow. Xu et al. [XWT∗09] presented
an improved method of propagating edits through the images
representing the raw BTF.

In work that is similar in spirit, Menzel and Guthe [MG09]
represented a BTF as the combination of an estimated
meso-structure and fitted Ashikhmin’s distribution BRDFs
[AP07]. Although this approach allows intuitive editing, the
major limitations are the height field assumption and a distri-
bution BRDF of a single normal at each texel, which cannot
approximate general BTFs with high quality. In comparison,
our method is derived mathematically to represent general
BTFs, and we do not assume height-field meso-structure.

Lawrence et al. [LBAD∗06] proposed the Inverse Shade
Tree (IST), a data-driven representation that is both compact
and editable, for spatially-varying BRDFs (SV-BRDFs). By
comparison, our representation differs from theirs in three
key respects. First, similar to [MG09], [LBAD∗06] also as-
sumes one local frame at each texel. This is very limiting
in terms of expressive power, we instead allow a differ-
ent local frame for each lobe in an SPMM. Since the BTF
is more complex and general than the SV-BRDF, it is un-
known whether IST will generate efficient representations
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Symbol Description

n a normal
bx a BTF at the point x

sx an SPMM
εx a residual function
ρ j a parametric basis function
α j the weight of ρ j in an SPMM
ᾱ j the weights for RGB channels
f j(κ j, ·) an analytical BRDF model,

κ j are the model parameters
β j the combination of f j , κ j and a local frame
y a cosine-weighted BTF texel
η a step size in stagewise Lasso
D a dictionary of basis functions
λ a regularization parameter
µ a residual function in stagewise Lasso
S / S specular / non-specular lobes
γ the probability of selecting a lobe

in importance sampling S

Table 1: Summary of the notation used in this paper.

for BTFs. Second, since the SPMM is based on analytical
models, we can directly edit model parameters and perform
importance sampling analytically, neither of which is avail-
able in IST. Third, in representing highly specular materi-
als, the analytical-model-based SPMM could be much more
compact than a data-driven method like [LBAD∗06].

3. A Sparse Parametric Mixture Model

3.1. Definitions

We start our derivation from the rendering equation for a
BTF at a surface point x [MMS∗05]:

Lr(x,ωo) =
∫

Ω
Li(x,ωi)bx(ωi,ωo)(nx ·ωi)dωi, (1)

where Lr denotes the reflected radiance, Li denotes the in-
coming radiance, ωi is the lighting direction and ωo is the
view direction. bx denotes the BTF, nx is the surface normal,
(·) is the cosine term, and Ω is the upper hemisphere over x.

Next we represent the cosine-weighted BTF term in Eq.
(1) using our Sparse Parametric Mixture Model:

bx(ωi,ωo)(nx ·ωi) =
m

∑
j=1

α jρ j(ωi,ωo)+ εx(ωi,ωo). (2)

The first term in the right-hand side of the above equation is
a linear combination of parametric functions {ρ j} with cor-
responding weights {α j}. εx is a residual function. The idea
for using SPMM is that by employing a sparse linear com-
bination of carefully-chosen parametric functions, we can
compactly represent the original BTF, provide meaningful
editing operations and allow efficient rendering as well. Pre-
vious methods (e.g. [MG09]), which fit only one analytical

BRDF model, can be viewed as a special case of our model,
where m = 1.

In our work, each parametric function ρ j is defined as a
cosine-weighted rotated BRDF:

ρ j(ωi,ωo) = f j(κ j,R(ωi),R(ωo))(n j ·ωi). (3)

Here, R is a rotation, which transforms a vector from the
global coordinate system to a local frame, f j(κ j, ·) is one
analytical BRDF model, with κ j as its model parameters. n j

is the normal of the local frame. In this paper, we employ
seven classic analytical BRDF models - Lambertian, Oren-
Nayar, Blinn-Phong, Ward, Cook-Torrance, Lafortune and
Ashikhmin-Shirley (see [NDM05]) - as candidates for f j.
Please see Fig.2 for an illustration of an SPMM representa-
tion. We note that SPMM is a general concept and is not lim-
ited to the aforementioned models. It is possible to use other
analytical BRDF models for f j , or even a different formula-
tion of ρ j from Eq. (3) for different applications. To simplify
the notation, for a particular ρ j, we denote the combination
of the model type of f j , the corresponding model parameters
κ j and its local frame (normal only if the analytical model
is isotropic), as β j. Note that for a given β j, ρ j is uniquely
determined.
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Figure 2: A BTF slice represented using an SPMM. Two

Lambertian, one Cook-Torrance and one Lafortune model

are used in this example. Each analytical model has its own

local frame.

Although we derive our model mathematically, one may
view SPMM as an approximate heterogeneous microfacet-
based reflectance model. Each ρ j describes a different appar-
ent reflectance function of a microfacet oriented towards n j.
Effects like shadowing, masking and interreflection, which
are not representable by the sparse linear combination of ro-
tated BRDFs, are included in the residual εx. Note that in Eq.
(2), our model approximates the cosine-weighted bx, rather
than bx alone. This is because our representation implicitly
has a normal distribution formed by various microfacets, in-
stead of a single normal.

3.2. The Fitting Method

Challenges arise when we begin to design a fitting algorithm
for an SPMM: the number of parametric functions, m, is un-
known; the nonlinear parameters {β j} (including the nor-
mals {n j}) are unknown; the corresponding weights {α j}
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are also unknown. Existing algorithms for fitting analytical
BRDF models (e.g. the Levenberg-Marquardt (LM) algo-
rithm in [LFTG97]) cannot be used here for several reasons.
First, the number of lobes is not known a priori, which is
required as input to the LM algorithm. Second, it becomes
more numerically unstable and more computationally ex-
pensive to fit for more than three lobes using the LM al-
gorithm. But it is undesirable to limit the number of para-
metric functions in an SPMM. Third, in SPMM we are us-
ing BRDFs rotated according to each one’s individual lo-
cal frame, which has more degrees of freedom than clas-
sic BRDF fitting, where only one local frame is assumed.
Fourth, there is no means to tradeoff between the sparsity
and the fitting quality. Last but not least, previous algorithms
fit for one type of analytical BRDF models only, while in
SPMM, each ρ j could be chosen from a set of different ana-
lytical models.

To tackle the above difficulties, we adopt the stagewise
Lasso algorithm [ZY07] from the machine learning commu-
nity. Stagewise Lasso computes an approximate optimal so-
lution to the following sparsity-constrained fitting problem:

argmin
αi,ρi∈D

||y−∑
i

αiρi||
2 +λ∑

i

|αi|. (4)

Here, ρi is a basis function chosen from a predefined dic-
tionary D, and αi is its weight. λ is a regularization pa-
rameter, which controls the balance between sparsity and
the L2-norm fitting quality of the final results. Unlike some
other related algorithms (e.g. Basis Pursuit [CDS98]), which
only work for finite dictionaries, stagewise Lasso also works
for infinite dictionaries. This is useful in our case, since the
number of possible analytical reflectance functions with dif-
ferent model parameters is infinite.

We briefly describe our stagewise-Lasso-based fitting al-
gorithm. For more details, please refer to the original paper
[ZY07]. Assume that we are fitting an SPMM to a cosine-
weighted BTF texel, denoted as y. Initially, a residual func-
tion µ is assigned as y. At each iteration, the algorithm finds
a parametric function, which, after normalization, has the
maximum dot product with the current µ. Then its corre-
sponding weight α is increased by a small constant step
size η. The weight is decreased if a backward step condi-
tion is satisfied. The residual function µ is updated at the
end of each iteration. The algorithm is terminated if a com-
puted regularization parameter λ is less than a user-specified
value. Note that to find a parametric function ρ, which is
best correlated with µ at each iteration, we employ IPOPT
[NWW08], an interior-point based nonlinear numerical op-
timizer, to solve the following problem:

argmax
ρ,β

〈ρ(β, ·),µ〉

||ρ(β, ·)|| ||µ||
. (5)

In practice, we test all analytical models and choose the one
that yields the maximum dot product between normalized

ρ and µ, along with the model parameters β. Physical con-
straints (e.g. n must reside in the upper hemisphere of y, α

must be non-negative, etc.) are also taken into account in the
entire process, so that we always end up with a feasible so-
lution.

After we obtained the basis functions {ρ j} and their
weights {α j}, we perform a hard-thresholding to elimi-
nate the basis functions with very small weights, in order
to avoid over-fitting. A typical threshold is 2η. Then, {α j}
are recomputed using the non-negative least square method
[LH74], which exploits the remaining basis functions.

It is straightforward to extend our aforementioned algo-
rithm to handle color information. For each {ρ j}, we keep

three weights ᾱ j = {αr
j,α

g
j ,α

b
j} for three color channels.

When searching for a best-correlated parametric function,
we separately process each channel and record the one with
the best correlation as the result. The rest of the algorithm
remains unchanged.

4. BTF Compression

4.1. The Algorithm

The fitting method for one BTF texel is computationally
expensive, since in each step we need to run the time-
consuming nonlinear numerical optimization to find the best
correlated parametric function. Directly applying the algo-
rithm to each texel of a BTF would require a prohibitively
long computation. To efficiently compress an entire BTF,
we first exploit spatial coherence by doing a k-means clus-
tering over all texels, similar to [MMK03]. Next, for each
cluster, we sample a number of texels in a stratified fashion:
we first generate sub-clusters using a further k-means clus-
tering inside the current cluster; then we randomly sample
a texel from each sub-cluster. After that, we run the fitting
algorithm over these samples and take the union of all resul-
tant basis functions as a dictionary for the entire cluster. Fi-
nally, a modified finite-dictionary version of stagewise Lasso
is used to fit each texel in the cluster. This variant of the orig-
inal fitting method is much faster, since it does not perform
the expensive nonlinear optimization and only chooses basis
functions from the dictionary we just computed.

The idea behind our compression algorithm is that after
the initial k-means clustering, the texels in one cluster are
close to each other. By doing a subsequent stratified sam-
pling, the intra-cluster variation is also captured. The union
of all basis functions computed from the stratified samples is
a suitable dictionary for fitting all texels in the same cluster.
We demonstrate our results in the next sub-section.

Once SPMM representations are fit for one cluster, we
compute the average error function between the SPMM ap-
proximation and the original data for all texels in the current
cluster, and use it as a common residual function ε [see Eq.
(2)] to further improve fitting quality. The extra storage for
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Woolp Corduroy Proposte Impala

Wallpaper Pullip Walkway Ceiling

Floortile Pinktile Cambrils a

Figure 3: Rendering comparisons. In each image pair for one material, the left image is the original BTF, and the right one is

our representation.

ε is modest as we only need to numerically store one addi-
tional function for a cluster, rather than for each texel. One
approach would be to store a few additional basis error func-
tions computed from PCA along with their coefficients for
each texel. However, in experiments, we have found that this
approach does not improve the quality of fitting too much,
while the additional storage increases. So we simply use the
single average error function for the whole cluster.

4.2. Results

We conducted experiments on a workstation with an Intel
2.4GHz quad-core processor and 4GB memory. All images
are rendered using our own unoptimized Monte-Carlo ray-
tracer, with 4 eye rays per pixel, based on Eqs. (1) and (2).
All original BTF data (except for cambrils), which are from
the University of Bonn [SSK03], have a spatial-angular res-
olution of 2562 × 812, and three 8/12-bit color channels in
RGB, which takes up 1.2GB/1.8GB. The material cambrils,
with credit to PSA Peugeot Citroen, has a spatial-angular
resolution of 722×1512, and each of its samples takes up 16
bits per color channel. In all our experiments, we use k = 32
in the initial k-means clustering and 8 samples in stratified
sampling for each cluster. We use 32-bit single-precision
floats and 32-bit integers to store all output coefficients of
our algorithm. No further quantization is performed. Simi-
lar to [HFM10], we measure the approximation quality of
our representation using MSSIM [WBS∗04] in YCrCb space
for all materials. The range of MSSIM is [0.0, 1.0], where a
value of 1.0 indicates that the images are identical. We show
the rendered images using the original BTFs and our repre-
sentations in Fig. 3. Please also see the accompany video for
a comparison.

The precomputation time varies from 9∼21 hours, though
this is a one-time process for a BTF. Our sparsity-
constrained fitting algorithm picks up 4∼14 basis functions
on average for each BTF texel. The fitting quality is fur-
ther improved by adding one additional per-cluster residual
function ε. The Peak Signal-to-Noise Ratio (PSNR) with
and without using ε are shown in Tab. 2. For each BTF
from the University of Bonn, the storage requirement of ε is
32× 812 × 3× 4 = 2.40MB (8.35MB for the material cam-

brils).

We compare our results with one state-of-the-art BTF
compression method [HFM10] in Tab. 2. Our representation
takes 6∼17MB for different materials, achieving a compres-
sion ratio of 1:71∼1:303. While the ratio is comparable to
the results from [HFM10], we obtain a considerably higher
approximation quality, as shown in Tab. 2. Furthermore, di-
rect editing of BTF is not possible on their representation.
Note that to make a fair comparison, we compare our com-
pression rate with C.R.1 in [HFM10], where 32-bit integers
and floats are also used. It would be an interesting future
avenue to apply similar quantization techniques to further
compress our representation and do a comparison in terms
of compression rate and approximation quality. For more de-
tails about our experimental statistics, please refer to Tab. 2.

5. BTF Editing

In this section, we demonstrate how to achieve various edit-
ing effects, via three simple forms of manipulations to our
representation. Please note that we focus on the less explored
BTF angular domain editing. For spatial domain editing, ex-
isting techniques (e.g. [AP08]) can be used orthogonal to our
method. We believe that one could achieve more editing ef-
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BTF Storage Approximation Quality Comp-
Total Avg Our Our MLVQ PSNR PSNR Our MLVQ ression

basis # basis # size C.R. C.R.1 (w/o ε) (with ε) MSSIM MSSIM Time
/ texel (MB) (hrs)

Wool 3632 9 12.53 1:98 1:77 14.43db 20.27db 0.904 0.684 10.49
Corduroy 5115 14 17.22 1:71 1:128 11.56db 19.60db 0.920 0.748 14.75
Proposte 950 5 8.57 1:144 1:236 16.51db 23.67db 0.936 0.710 8.65
Impala 5397 8 11.76 1:105 1:162 17.82db 21.91db 0.934 0.730 14.19
Wallpaper 3353 6 9.22 1:133 1:222 17.66db 23.94db 0.941 0.776 12.42
Pulli 2057 5 8.88 1:138 1:87 13.62db 17.86db 0.883 0.699 10.59
Walkway⋄ 3879 6 9.53 1:194 1:102 12.48db 19.78db 0.980 0.884 21.33
Ceiling⋄ 2096 3 6.08 1:303 1:235 13.68db 22.42db 0.971 0.711 12.86
Floortile⋄ 4352 4 7.43 1:248 1:136 15.95db 19.54db 0.927 0.772 15.49
Pinktile⋄ 704 6 9.32 1:198 1:711 10.00db 32.42db 0.999 0.961 14.69
Cambrils∗ 2255 5 8.86 1:76 n/a 8.58db 13.16db 0.966 n/a 18.72

⋄ : HDR sample, 12 bits/channel. ∗ : HDR sample, 16 bits/channel. C.R. : Compression rate.

Table 2: Various statistics from our experiments, with comparisons to Multi-Level Vector Quantization (MLVQ) [HFM10]. We

achieve considerably higher approximation quality, while our compression rates are comparable to MLVQ.

fects than the ones listed here, by creatively exploiting basic
editing operations.

5.1. Adjusting the Weights {ᾱ j}

One simple edit performed by adjusting {ᾱ j} is to change
the overall intensity of the BTF: we just multiply all
{ᾱ j} with the same constant c. However, to change the
hue/saturation requires more effort, since these two quanti-
ties are not linear in RGB space, unlike the intensity. In other
words, applying hue/saturation changes to ᾱ j of each lobe
in an SPMM is not equivalent to applying the same change
to the linear combination of these lobes, due to the nonlin-
earity. To address this issue, we compute one optimal linear
approximation M, which is a 3×3 matrix, for each possible
hue/saturation change e, based on the following equation:

argmin
M

∑
∀c

||e(c)−Mc||2. (6)

Then, we can multiply M with every ᾱ j to approximate the
editing operation e:

e(
m

∑
j=1

ᾱ jρ j(ωi,ωo))≈ M
m

∑
j=1

ᾱ jρ j(ωi,ωo)

=
m

∑
j=1

Mᾱ j ρ j(ωi,ωo). (7)

In our experiments, we precompute M for 10,000 different
hue/saturation changes, using least squares. When comput-
ing each M according to Eq. (6), we sample 10,000 unit vec-
tors as c from the RGB color space. All precomputed M are
only 352KB, and can be applied to any material instantly
in interactive editing. We can see in Fig. 4 that the results
using our linear approximation is close to directly applying
the editing as a post-processing after evaluating the original
SPMM.

Figure 4: Changing the hue/saturation of wool (original

appearance shown in Fig. 3). Top row: our linear approx-

imated hue/saturation editing. Bottom row: post-processing.

From the left to the right column, shifting the hue by −110◦,

shifting the hue by 116◦ and applying desaturation.

Another editing effect is to adjust specular/non-specular
intensity. Thanks to our representation, we can discrimi-
nate specular/non-specular parametric BRDFs based on the
following simple criterion: Lambertian and Oren-Nayar are
classified as non-specular; all other models are classified
based on the coefficients that control the specularity. For ex-
ample, if the exponential parameter of a Blinn-Phong model
is larger than an empirical threshold, the model is classified
as specular; otherwise, we regard it as non-specular. Based
on this criterion, we can edit the weights for all specular
or non-specular {ρ j} separately to create various effects. In
Fig. 5, we first increase the weights of all specular lobes to
make the material look more specular. Then using Eq. (7),
we multiply a precomputed M to all ᾱ j of specular lobes, in
order to change the specular hue.
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Figure 5: Increasing specular intensity and changing specu-

lar hue. Left: original. Middle: increased specular intensity.

Right: specular hue changed to green.

5.2. Adjusting the Model Parameters {β j}

We show how to create a more metallic look by adjusting
{β j}. Using the specular criterion described in previous sub-
section, we first pick up specular {ρ j} from our SPMM.
Next, we adjust the coefficients for each specular ρ j so that
the specular lobe becomes narrower, yielding a much more
metallic look to the material, as shown in Fig. 6(b). One ad-
ditional benefit of using SPMM is that we are not limited to
the angular resolution of the original BTF, in analogy to rep-
resenting BRDF data using analytical models. This is partic-
ularly useful for faithfully representing highly specular ma-
terials. In Fig. 6(c), we can see that representing the edited
material using the original BTF format results in more blurry
highlights.

(a) Original (b) More metallic (c) Original format

Figure 6: Narrowing specular lobes. (c) is representing (b)

in the original BTF format. The highlight looks more blurry

compared to (b).

5.3. Adjusting the Normal Distribution

Recall from Sec. 3.1 that our representation implicitly forms
a normal distribution. Actually, we can adjust this normal
distribution to facilitate roughness editing. In Fig. 7, for each
ρ j, we change its normal by decreasing its elevation angle.
Overall, the normal distribution is more spread out, which

gives a rougher / more embossed look, as shown in the image
on the right.

Figure 7: Changing the normal distribution. Left: original.

Right: increased roughness.

5.4. User Interface

We have implemented an interactive material editing proto-
type system, as shown in Fig. 8, to facilitate editing with vi-
sual feedback. The SPMMs in editing are rendered on an ob-
ject under user-specified lighting configuration and viewing
angle. Spatial selection is visualized as a color mask over the
original BTF slice, and angular editing operations are done
by dragging individual sliders. To provide interactive visual
feedback, we employ our multi-threaded raytracer to gener-
ate new images after an editing operation is applied. Various
optimization techniques, such as caching the intersection test
results for eye rays and shadow rays, are used to accelerate

Figure 8: The user interface of our interactive material

editing system for SPMM. The top-left window shows the

original appearance, and the edited look is displayed in

the top-center window. The bottom-left window facilitates

spatial selections. On the right side, various editing sliders

are shown, including changing the hue, narrowing specular

shapes, changing the normal distribution, etc.
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(a) Original (b) More embossed (c) Hue changes (d) Golden stripes

Figure 9: A series of editing operations are applied to a wool blouse (a). First, we spread out the normal distribution of the

SPMM to get a more embossed look (b). Then, red stripes (c) are added by shifting the hue. Finally, we add golden stripes (d)

by both adjusting the color and narrowing the specular lobes.

the rendering. On average, a rendering update of our system
takes about half a second. In the future, it would be interest-
ing to map our system onto GPUs for further performance
improvement. Note that all editing examples shown in this
paper are generated using this system. Please refer to Fig.
9 and our accompany video for an example of applying a
series of editing operations.

Limitations Since our representation is mathematically de-
rived, rather than strictly physically based, the results of edit-
ing operations might not be physically correct. This is sim-
ilar to the editing on the raw BTF in [KBD07]. Neverthe-
less, we believe that in many applications of material editing,
such as games and film production, the visual appearance is
more important than physical accuracy to human observers.
Our editing operations would be useful as long as the modi-
fied materials appear plausible.

6. BTF Rendering

In efficient Monte-Carlo rendering, we are interested in im-
portance sampling of ωi for a fixed ωo. This is especially im-
portant for specular materials, where the reflectance changes
quickly over the angular domain. So our idea here is to first
divide all lobes in an SPMM into two groups, a specular
group S and a non-specular one S, using the empirical crite-
rion described in Sec. 5.1, and then separately process them.

For the non-specular group S, we have found in our exper-
iments that it is sufficient to use one cosine lobe, whose local
frame coincides with that of the BTF texel, as the probability
distribution for importance sampling the sum of all lobes in
S, as they are slowly varying in the angular domain.

For the specular group S, recall that in Sec. 3.1, most of
the BRDF models used in SPMM can be analytically impor-
tance sampled, except for Ward and Cook-Torrance. There-
fore, if we fit the original BTF using only the models that
can be analytically importance sampled, we can sample ωi

from the following mixture of analytical BRDFs:

∑
j∈S

γ j f j(κ j,R(ωi),R(ωo)), (8)

where γ j is the precomputed ratio of the average intensity of

lobe j over the average intensity of the above mixture,

γ j =

∫∫
α j f j(κ j,R(ωi),R(ωo))dωidωo

∑k∈S

∫∫
αk fk(κk,R(ωi),R(ωo))dωidωo

. (9)

To sample a direction from the mixture defined in Eq. (8), we
first randomly choose a lobe j based on the probability dis-
tribution of {γ j}. Then, we sample a ωi using the analytical
importance sampling method of f j . Note that the probability
of choosing ωi is the weighted probability of sampling ωi in
each lobe in the mixture.

(a) (b) (c)

(d) (e)

Figure 10: SPMM-based importance sampling of an edited

impala material. Images in the top row are generated by pro-

jecting the upper hemisphere of a local frame onto a pla-

nar circle. (a) BTF intensity distribution for a fixed ωo. The

more saturated blue, the higher the intensity. (b) Samples

generated using our SPMM-based importance sampling. (c)

Samples generated from a cosine lobe. In the bottom row

are equal-time renderings using our method (d), and using

cosine-lobe-based samples (e). The noise level in (d) is much

lower than in (e).

Finally, to importance sample the entire SPMM, we sim-
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ply combine the sampling methods for S and S, and use a
weighted average as the combined probability distribution
function. Since we are using a cosine lobe when sampling
S, it is guaranteed that every direction in the upper hemi-
sphere has a nonzero probability to be sampled. Please re-
fer to Fig. 10(a)-(c) for visualizations of different sampling
methods. Our method generates samples whose density ap-
proximately matches the BTF intensity distribution. For the
edited impala in Fig. 10, the additional storage for {γ j}
and the weights to combine samples from S and S is only
0.73MB. Fig. 10(d) and (e) show a comparison of the noise
level between the rendering results using our method and the
conventional cosine-weighted method.

7. Conclusion and Future Work

We have proposed a compact, easily editable and efficiently
renderable high-quality representation for general BTFs. We
have also presented a stagewise-Lasso-based fitting algo-
rithm to compute our representation from raw BTF data. To
our knowledge, this is the first algorithm for fitting multiple,
rotated analytical BRDFs of different types. We have shown
the applications of our representation in BTF compression,
editing and rendering.

In future work, we would like to implement SPMM on
GPUs in order to achieve real-time rendering. We would also
like to experiment with other analytical BRDF models, or
even a different formulation of ρ j, to further improve fitting
quality or introduce more editing options.
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