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Fig. 1. Rendering results of 108 (out of 1,000) high-quality SVBRDFs captured and reconstructed with our novel integrated system. Each row represents one
category in our database. Please refer to the accompanying video for animated sequences.
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spanning 9 material categories such as wood, fabric and metal. Each sam-
ple is captured in 15 minutes, and represented as a set of high-resolution
texture maps that correspond to spatially-varying BRDF parameters and
local frames. To build this database, we develop a novel integrated system
for robust, high-quality and -efficiency reflectance acquisition and recon-
struction. Our setup consists of 2 cameras and 16,384 LEDs. We train 64
lighting patterns for efficient acquisition, in conjunction with a network
that predicts per-point reflectance in a neural representation from carefully
aligned two-view measurements captured under the patterns. The interme-
diate results are further fine-tuned with respect to the photographs acquired
under 63 effective linear lights, and finally fitted to a BRDF model. We report
various statistics of the database, and demonstrate its value in the applica-
tions of material generation, classification as well as sampling. All related
data, including future additions to the database, can be downloaded from
https://opensvbrdf.github.io/.
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1 INTRODUCTION

High-quality material appearance models the intricate physical in-
teractions with light [Dorsey et al. 2010]. Often represented as a 6D
Spatially-Varying Bidirectional Reflectance Distribution Function
(SVBRDF), it is an indispensable component in visual computing,
with a wide range of applications including cultural heritage, e-
commerce, video games and visual effects. In computer graphics,
high-quality digitized appearance can be rendered to faithfully re-
produce the complex physical look that varies with location, lighting
and view [Jakob et al. 2022]. On the other hand, material appearance
helps machines better understand the real world from images [Li
et al. 2020].
Over the past decades, considerable efforts have been made in

building highly valuable reflectance databases, driven by the grow-
ing demand for accurate, diverse digital appearance both in academia
and industry. This results in a few pieces of seminal work, in-
cluding [Lawrence et al. 2006; Matusik et al. 2003] for scanned
BRDFs/SVBRDFs and [Deschaintre et al. 2018] for synthetic SVBRDFs.
However, the number of publicly available captured reflectance
datasets remains limited nowadays, which hinders the development
of related research in this data-hungry era. For example, the MERL
database of 100 measured isotropic BRDFs [Matusik et al. 2003]
remains in active use in research, 20 years after its publication.

Here the main reason is the technical difficulty in acquiring large-
scale datasets with existing techniques. Despite its quality, exhaus-
tively sampling the 6D physical domain of a single SVBRDF is pro-
hibitively time-consuming [Dana et al. 1999; Lawrence et al. 2006],
and thus cannot scale to building a large database. Strong-prior-
based approaches trade reconstruction quality for acquisition effi-
ciency [Lensch et al. 2003; Wang et al. 2008]; the quality of results
cannot be guaranteed, whenever the assumptions are not satisfied.

For illumination-multiplexing techniques with high quality and effi-
ciency in general, even state-of-the-art work [Kang et al. 2018] is
not sufficiently robust to handle challenging cases such as brushed
metal and polished wood.
To address the above issues, we present a novel integrated sys-

tem for robust, high-quality and -efficiency capture of near-planar
anisotropic SVBRDFs. Our setup consists of 2 cameras and 16,384
independently controlled, high-brightness LEDs. We train a small
set of lighting patterns for efficient acquisition, in conjunction with
a network that predicts per-point reflectance in a neural representa-
tion from carefully aligned two-view measurements captured under
the patterns. The intermediate results are further fine-tuned with
respect to the photographs acquired under various effective linear
light sources, and finally fitted to a BRDF model whose param-
eters are stored as texture maps. We validate the results against
photographs and evaluate the design decisions.
Using our system, we build OpenSVBRDF, the first large-scale

database of measured spatially-varying anisotropic reflectance. It
consists of 1,000 high-quality near-planar SVBRDFs, spanning 9 cat-
egories of materials such as wood, fabric and metal. Each SVBRDF is
captured in 15 minutes, and represented as a set of high-resolution
texturemaps that correspond to spatially-varyingGGXBRDF param-
eters [Walter et al. 2007] and local frames. All related data (texture
maps and photographs under learned patterns and linear lights)
as well as future additions to the database can be freely down-
loaded from https://opensvbrdf.github.io/. Finally, we report various
statistics of the database and explore its applications in material
generation, classification as well as sampling. Superior results are
demonstrated with the help of our database.

2 RELATED WORKS

2.1 Reflectance Acquisition

Here we mainly review acquisition techniques with active illumi-
nation, which are most related to this paper. Interested readers are
directed to excellent surveys for a broader view of the topic [Dong
2019; Guarnera et al. 2016; Weinmann and Klein 2015; Weyrich et al.
2009].

A straightforward way to capture a general SVBRDF is to densely
sample its 6D domain [Dana et al. 1999; Lawrence et al. 2006]. A
spherical gantry moves a pair of a camera and a point light to sample
at different combinations of the view and lighting directions. While
the result quality is excellent, the acquisition time is extremely long.
So other work aims to make acquisition more practical, which can
be divided into the following two classes.

2.1.1 Prior-Based. This class of methods introduce various priors
to regularize the reconstruction problem, therefore considerably
reducing the number of measurements. Marschner et al. [2000] re-
cover isotropic reflectance of a homogeneous convex object from a
single view direction. Lensch et al. [2003] model the appearance as a
linear combination of basis materials to constrain the reconstruction
from a sparse number of flash-lit images. The idea is extended from
a linear space to a low-dimensional manifold in [Dong et al. 2010].
Wang et al. [2008] exploit the spatial similarity of reflectance and
spatial variation of local frames for single-view reconstruction of
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microfacet BRDFs. Sparse lighting and view sampling directions
are optimized by leveraging the MERL BRDF database and the spa-
tial homogeneity for BRDF acquisition from a small number of
images [Nielsen et al. 2015; Xu et al. 2016]. A dictionary-based re-
flectance prior is proposed in [Hui et al. 2017]. Nam et al. [2018]
use hundreds of multi-view flash photographs to recover both a 3D
shape and isotropic reflectance expressed as a linear combination
of basis materials.
With the success of deep learning, priors gradually shift from

heuristic ones to data-driven ones. Aittala et al. [2016] exploit struc-
tural similarity to estimate a stationary SVBRDF from a single flash
image. A self-augmentation training process is employed to model
SVBRDF from a single photograph [Li et al. 2017]. Deschaintre et
al. [2018] propose a method that takes a single input photograph
lit by a flash, and outputs an SVBRDF with a network trained over
a dataset of procedural materials. Gao et al. [2019] learn a latent
embedding to regularize the optimization for SVBRDF reconstruc-
tion with respect to an arbitrary number of input images. Guo et
al. [2021] introduce highlight-aware convolution to estimate the
saturated highlights from the adjacent unsaturated area in a single
image.

In comparison, we emphasize result quality and choose to rely on
as few assumptions as possible. For example, while the majority of
existing techniques exploit spatial coherence, our approach works
in a pixel-independent fashion to preserve high-frequency spatial
details. On the other hand, our measured database might serve as
a more powerful prior for existing learning-based work, which is
often limited by isotropic training datasets: with our database, it
might be possible to learn novel anisotropic reflectance estimation
networks from a highly sparse number of input images.

2.1.2 Illumination Multiplexing. This highly successful class of ap-
proaches pack more information in a unit measurement by program-
ming the intensities of multiple lights simultaneously over time,
which improves the acquisition efficiency and signal-to-noise ratio.
Lightstages take photographs of a sample under gradient illumina-
tion [Ghosh et al. 2009] or spherical harmonics [Tunwattanapong
et al. 2013], and compute the reflectance from a manually derived in-
verse lookup table, which maps the observed radiance to anisotropic
BRDF parameters. In Gardner et al. [2003] and Chen et al. [2014], a
linear light source is regularly moved over a planar sample, and the
reflectance is reconstructed from the corresponding appearance vari-
ations. The irregular motion of the linear light is supported in [Ren
et al. 2011] with the help of pre-calibrated physical BRDF patches.
Aittala et al. [2013] employ a camera and a near-field LCD panel as a
programmable light source, to capture an isotropic reflectance using
a frequency domain analysis. A sophisticated system is proposed
in [Nam et al. 2016] to reconstruct micro-scale reflectance via an
alternating optimization.

Recently, neural reflectance acquisition techniques map both the
physical acquisition and computational processing to a single net-
work, enabling the joint and automatic optimization of both the
hardware and software. High acquisition efficiency and result qual-
ity are demonstrated on planar [Kang et al. 2018] and non-planar
reflectance [Kang et al. 2019; Ma et al. 2021]. Our method is most
similar to this line of work. In comparison, we further improve the

reconstruction quality to robustly scale to a large number of physi-
cal samples, via an intermediate neural representation (Sec. 6) and
additional fine-tuning (Sec. 7.1).

2.2 Measured Reflectance Datasets

As aforementioned, due to the difficulty of supporting robust, high
-quality and -efficiency capture at once, public databases of accu-
rately measured reflectance have always been a scarce and valuable
resource over the past decades.

BRDF. Matusik et al. [2003] build a database of 100 measured
isotropic BRDFs, expressed in the half-angle parameterization and
discretized into 90×90×180 angular bins. The BRDFs of 8 automotive
paints are acquired with an image-based setup in [Günther et al.
2005]. The UTIA dataset focuses on dense sampling of anisotropic
reflectance and contains 150 measured BRDFs [Filip and Vávra 2014].
Recently, Dupuy and Jakob [2018] propose an adaptive BRDF pa-
rameterization for efficient sampling, and capture a dataset with 51
isotropic and 11 anisotropic BRDFs.

SVBRDF. Lawrence et al. [2006] acquire 5 anisotropic SVBRDFs
and develop a decomposition algorithm to efficiently represent the
data. Deschaintre et al. [2018] provide a dataset of 1,850 artist-
created, parametric isotropic SVBRDFs, which are widely used in
subsequent research on learning-based material estimation.

BTF. Despite its generality, Bidirectional Texture Function is
an image-based representation, which does not record reflectance.
Therefore, no physical knowledge in the angular domain can be
exploited; exhaustive sampling of the view/lighting directions has
to be conducted. Dana et al. [1999] capture 61 samples as the CUReT
database. The UBO2014 dataset [Weinmann et al. 2014] consists of
7 material categories, each of which includes 12 samples, with an
angular sampling rate of 151×151.
In comparison, OpenSVBRDF is the first large-scale database of

measured spatially-varying anisotropic reflectance. We will make
public all data related to this growing dataset, which hopefully will
benefit both academia and industry.

3 PRELIMINARIES

We first list the single-channel relationship among the image mea-
surement 𝐵 from a surface point p, the reflectance 𝑓 and the intensity
𝐼 of each LED on our device as follows:

𝐵(𝐼 , xp, np, tp) =
∑︁
𝑙

𝐼 (𝑙)
∫

1
| |xl − xp | |2

Ψ(xl,−𝜔i)𝑉 (xl, xp)

𝑓 (𝜔i
′;𝜔o

′, p) (𝜔i · np)+ (−𝜔i · nl)+𝑑xl . (1)

Here 𝑙 is the index of an LED, and 𝐼 (𝑙) is its intensity in the range of
[0, 1], the collection of which will be referred to as a lighting pattern.
Moreover, xp/np/tp is the position/normal/tangent of p, while xl/nl
is the position/normal of a point on the light. We denote𝜔i/𝜔o as the
lighting/view direction, with 𝜔i =

xl−xp
| |xl−xp | | . Ψ(xl, ·) represents the

angular distribution of the light intensity. 𝑉 is a visibility function
between xl and xp. The operator (·)+ computes a dot product and
clamps a negative result to zero. We employ the anisotropic GGX

ACM Trans. Graph., Vol. 42, No. 6, Article 254. Publication date: December 2023.



254:4 • Xiaohe Ma, Xianmin Xu, Leyao Zhang, Kun Zhou, and Hongzhi Wu

Warp

PatchMatch

Lighting
Patterns

Primary
View 

Secondary
View

Pe
r-

Po
in

t
M

ea
su

re
m

en
ts

 a
t t

w
o 

vi
ew

s

Pe
r-

Po
in

t
M

ea
su

re
m

en
ts

Pr
oj

ec
t

Fi
ne

-t
un

in
g

Fine-tuned
Lumitexel

BR
DF

Fi
tt

in
g

GG
X

Pa
ra

m
et

er
s&

Lo
ca

lF
ra

m
e

Roughnesses

Final Texture Maps

Normal Tangent
Pr

oj
ec

t

… … …

Simulated
Linear Lights

… … Diffuse
Albedo

Specular
Albedo

Secondary
View

Predicted
Lumitexel

Primary
View 

Network

La
te

nt

Fig. 2. Our pipeline. For each surface point on the sample, we physically encode its corresponding lumitexels at 2 views with 64 learned lighting patterns as
photometric measurements; accurate correspondences between 2 views are computed by warping followed by dense SIFT features matching. A network then
transforms these measurements to recover the lumitexel at the primary view, expressed in an intermediate neural representation. The neural representation is
further optimized with respect to the image measurements under 63 effective linear light sources, and fitted to a GGX BRDF along with a local frame. The
final results are stored as texture maps.
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Fig. 3. Our acquisition setup. From left to right: (a) a photograph of our device, (b) the primary view, (c) the secondary view, (d) a side view, and (e) the light
layout by unfolding all faces to the top plane. A total of 16,384 LEDs are installed.

model [Walter et al. 2007] to efficiently represent the BRDF 𝑓 :

𝑓 (𝜔i;𝜔o, p) =
𝜌𝑑

𝜋
+ 𝜌𝑠

𝐷 (𝜔h;𝛼𝑥 , 𝛼𝑦)𝐹 (𝜔i, 𝜔h)𝐺 (𝜔i, 𝜔o;𝛼𝑥 , 𝛼𝑦)
4(𝜔i · n) (𝜔o · n)

,

where 𝜌𝑑 /𝜌𝑠 is the diffuse/specular albedo, 𝛼𝑥 /𝛼𝑦 is the roughness,
and𝜔ℎ is the half vector. In addition,𝐷 is the microfacet distribution
function, 𝐹 is the Fresnel term, and 𝐺 is the geometry term for
shadowing/masking effects. Also an index of refraction of 1.5 is used
in all experiments. Next, a lumitexel𝑚 is defined as the collection
of virtual measurements of BRDF 𝑓 at p, with one LED on at a
time [Lensch et al. 2003]. It is a function of the light index 𝑙 :

𝑚(𝑙 ; p) = 𝐵({𝐼 (𝑙) = 1,∀𝑘≠𝑙 𝐼 (𝑘) = 0}, p) . (2)

4 ACQUISITION OVERVIEW

We propose a novel integrated system for robust, high-quality and
-efficiency capture of near-planar reflectance. First, we build an
illumination multiplexing setup with 16,384 LEDs and 2 cameras.
To scan a physical sample, we establish accurate correspondences
between 2 views by matching dense SIFT features under uniform
lighting. Next, for each surface point on the sample, we physically
encode its corresponding lumitexels at 2 views with 64 learned
lighting patterns as photometric measurements. A network then
transforms these measurements to recover the lumitexel at the
primary view, expressed in an intermediate neural representation.

The neural representation is further fine-tuned with respect to the
image measurements under 63 effective linear light sources, and
fitted to a GGX BRDF along with a local frame. The final results
are stored as texture maps. Please refer to Fig. 2 for a graphical
illustration.

5 ACQUISITION SETUP

We build a near-field light-hemicube to scan physical appearance
(Fig. 3). Its size is about 70cm×70cm×40cm. The material sample is
placed on a translucent acrylic board, which can be slid in/out via
attached drawer runners for rapid sample replacement in database
construction. The maximum allowed sample size is 15cm×15cm. A
hollow aluminum square covered with ARTags[Fiala 2005] is placed
on top of the sample for fixation during acquisition.
We install two 24MP Basler a2A5328-15ucPRO vision cameras,

pointing towards the sample from approximately 90◦ (primary) and
45◦ (secondary). The primary view is designed for direct imaging
the sample at a standard view; otherwise, images warped from other
views would have uneven sampling rates at different locations. The
secondary view is for capturing interesting reflectance features in
the angular domain, as is common in previous work [Kang et al.
2018]. There are 16,384 high-brightness LEDs around the sample,
attached with diffusers and mounted to all six sides of our hemicube.
The LED pitch is 1cm, and the intensity is quantized with 8 bits

ACM Trans. Graph., Vol. 42, No. 6, Article 254. Publication date: December 2023.
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Fig. 4. Network architecture. The physical input lumitexel is transformed into a set of measurements by a single fc layer that represents all lighting patterns.
Two fc networks convert the measurements to 8D albedo and 48D shape components of a latent vector. Next, an 11-layer fc network recovers the final lumitexel
from the latent vector. Each fc layer before the latent is followed by a batch normalization layer and then a leaky ReLU activation layer. Each fc layer after the
latent and before the last one is followed by a leaky ReLU activation layer.

using house-made circuits. Our device is similar to the one built
in [Ma et al. 2023], with one extra camera and bottom-side lighting.
We calibrate the intrinsic and extrinsic parameters of cameras,

as well as the positions, orientations and angular intensity distri-
bution of each LED. In addition, vignetting is corrected with a flat
field source, and color calibration is performed with an X-Rite Col-
orChecker Passport.

6 ACQUISITION NETWORK

Input/Output. The input to our network is a set of 128 single-
channel physical measurements of a point on the material sample
at 2 views, captured under 64 pre-optimized lighting patterns. Note
that the original RGB channels of all measurements are averaged
to a single gray-scale channel. We discuss the handling of RGB
information in Sec. 7.1. The output is a gray-scale lumitexel at the
primary view with a dimension of 12,288, the number of LEDs in

Fig. 5. Visualization of lighting patterns and corresponding photographs.
From the top row to bottom: learned patterns, corresponding photographs at
the primary and secondary view; linear lighting patterns, and corresponding
photograph at the primary view. Each lighting pattern is parameterized on
a cross, by unfolding all hemicube faces except the bottom to the top plane.
Note that only a subset of all patterns are shown due to limited space.

the upper hemisphere of the sample plane. The lighting pattern
number is set to 64, instead of 32 as in existing work [Kang et al.
2018, 2019], since we aim for improved quality at the cost of slightly
increased acquisition time in database construction. The output of
our network is the predicted lumitexel.

Architecture. The network consists of 17 fc layers (Fig. 4). Its
bottleneck is a 56D latent vector, which can be viewed as a low-
dimensional neural representation of the lumitexel. To support sub-
sequent fine-tuning step, this vector contains an 8D albedo compo-
nent which relates to diffuse and specular albedo, and a 48D shape
component that controls the albedo-independent part of a lumitexel.
Alternatively, one can choose not to disentangle albedo and the
rest in the latent vector. However, this brings in undesired extra
degrees of freedom in the RGB case, since now the latent vector for
each channel can correspond to e.g., different roughness parame-
ters, which severely limits the reconstruction quality. Please refer
to Sec. 7.1 for more details.

Similar to previous work on neural acquisition, we link the light-
ing patterns with the network in a differentiable fashion: measure-
ments of the reflected radiances under projected lighting patterns
are modeled as dot products between the physical lumitexel at the
same view and the patterns (Eq. 1). This allows the joint optimiza-
tion of illumination conditions and the network towards optimal
reconstruction quality.

Loss. Our loss function measures the squared difference between
the predicted lumitexel and its label:

𝐿 =Σ𝑙 [log(1 +𝑚(𝑙)) − log(1 + �̃�(𝑙))]2 . (3)

Here𝑚/�̃� represents the predicted/ground-truth lumitexel, respec-
tively. A log transform is performed to compress the high dynamic
range in the reflectance.

Training. Our network is implemented with PyTorch and trained
using the Adam optimizer, with mini-batches of 50, a momentum
of 0.9 and a learning rate of 1 × 10−4 for 0.5 million iterations.
Xavier initialization is applied. Based on the GGX BRDF model
and the calibration data of the device, we generate 200 million
virtual lumitexels as training data (Eq. 1), by randomly sampling
the position, the local frame, as well as BRDF parameters. Please
refer to [Kang et al. 2018] for details.

ACM Trans. Graph., Vol. 42, No. 6, Article 254. Publication date: December 2023.
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For robustness in physical acquisition, we apply dropout regular-
ization with a rate of 30% to all layers except the last, and perturb
the synthetic measurements with a multiplicative Gaussian noise
(𝜇 = 1, 𝜎 = 5%), similar to [Kang et al. 2019]. We add additional train-
ing noise to the secondary view to increase the robustness of the
network, in case the correspondences are not accurate at test time.
When generating the lumitexels in the secondary view, we replace
30% of parameters with perturbed 𝜌𝑑/𝜌𝑠 and 𝛼𝑥/𝛼𝑦 , by multiplying
with a Gaussian noise (𝜇 = 1, 𝜎 = 5%) and perturbing 𝑛 with a
random orthogonal vector, whose length is drawn from a Gaussian
distribution (𝜇 = 0, 𝜎 = 15%). We also replace 10% of parameters
with completely random values, so that the network learns to deal
with the challenging cases with inaccurate correspondences.

To decouple albedo and shape components in the latent vec-
tor, we train in pairs of samples. Suppose we randomly sample a
pair of reflectance {𝜌𝑖

𝑑
, 𝜌𝑖𝑠 , 𝛼

𝑖
𝑥 , 𝛼

𝑖
𝑦, ...}𝑖=1,2. We exchange their albe-

dos to obtain two new sets of parameters {𝜌2
𝑑
, 𝜌2𝑠 , 𝛼

1
𝑥 , 𝛼

1
𝑦, ...} and

{𝜌1
𝑑
, 𝜌1𝑠 , 𝛼

2
𝑥 , 𝛼

2
𝑦, ...}. At the same time, we also swap the correspond-

ing albedo components, and encourage the predicted lumitexels to
be similar to the ones generated with the new sets of parameters.
The sum of the losses on the above 4 lumitexels will be used as the
total loss.

7 ACQUISITION PROCESSING

7.1 Fine-tuning

While the quality of the direct output of our network is often satis-
factory, we further push it via sample-specific fine-tuning to achieve
photo-grade reconstruction with a variety of view and lighting con-
ditions. This is crucial in building a database, which requires robust,
high-quality reconstructions for a large number of diverse samples.
Specifically, we capture additional photographs of the sample

at the primary view under 64 randomly sampled effective linear
lights, implemented with our setup (Fig. 5). Note that various types
of lighting patterns are tested, including point, area and learned
patterns. We find that linear lights strike a good balance between
acquisition time and quality after fine-tuning (a comparison with

(a) (b) (c)

(d) (e) (f)

Fig. 6. Visualization of the results after each processing step. (a) the gray-
scale version of the photograph, (b) network output, the result after each
fine-tuning step (c-e), and (f) the original photograph.

SSIM/PSNR 0.91/28.62 0.50/10.03 0.39/10.75 0.73/20.21

SSIM/PSNR 0.98/36.33 0.79/19.87 0.69/18.89 0.85/25.08

SSIM/PSNR 0.97/32.89 0.75/20.05 0.58/16.74 0.88/23.72

Fig. 7. Impact of lighting patterns and initialization for fine-tuning. From
the left column to right: photographs, fine-tuned results under linear lights
with network-inferred latent initialization (our approach), direct fine-tuned
results under linear lighting patterns, direct fine-tuned results under learned
lighting patterns, and direct network output without fine-tuning.

learned patterns is shown in Fig. 7). Next, per-pixel fine-tuning
of the latent vector is performed with respect to 63 photographs
(the remaining one from all 64 photographs is left for validation):
the loss is the error between the physical measurements and the
simulated measurements computed from the latent vector with
our network and Eq. 1. This process consists of 3 steps. (1) We
optimize a gray-scale 8+48 = 56D latent vector against the gray-
scale version of photographs, taking the latent vector computed
by our network as the initialization. (2) For each RGB channel, we
fix the shared 48D shape components, and use the same gray-scale
albedo components as the initial values, to optimize against one
channel of the photographs. (3) The shared 48D shape components
and the RGB 8×3 = 24D albedo components are simultaneously
refined, resulting in an RGB latent vector of 24+48 = 72D. Note
that our latent dimension is determined via extensive experiments,
ranging from 128 (16D albedo + 112D highlight shape) to 36 (6D
albedo + 30D highlight shape).We find that 8D is needed to represent
a single-channel albedo to avoid color artifacts, and 48D is needed
to faithfully represent the highlight.

We use Adam optimizer with mini-batches of 100 and a momen-
tum of 0.9 in all steps. The learning rate is 0.02, 0.05 and 0.02, and
the iteration number is set to 100, 50 and 200, for 3 steps respec-
tively. These hyper-parameters are determined from experiments.
The intermediate results after each step are shown in Fig. 6.

Fig. 7 demonstrates the quality improvement of fine-tuning on
challenging physical samples. The figure also shows that fine-tuning
only leads to inferior results; it is crucial for our network to provide
decent starting points. Therefore, both network inference and fine-
tuning are essential to the quality of our database.

7.2 Fitting

The RGB latent vector from fine-tuning, essentially describing a
2D lumitexel, can be converted to a standard 4D BRDF for use in
any conventional graphics pipeline. While we select GGX in this
paper, other forms of analytical or neural representations can also
be employed.
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Fig. 8. Visualization of database examples in each category. For images from the top row to bottom in each column: a photograph of the physical sample,
the visualization of latent vectors, and the fitting results to the GGX model. Latent vectors are projected to 3 dimensions via PCA for visualization. Each
normal/tangent is added with (1, 1, 1) and then divided by 2 to fit into the range of [0, 1]3. The roughness 𝛼𝑥 /𝛼𝑦 is visualized in the red/green channel.

We perform the fitting via differentiable rendering, with a loss
that minimizes the differences between the lumitexel computed from
the RGB latent vector and the one computed from GGX parameters.
Note that we do not directly optimize GGX parameters. Instead, we
reparameterize the GGX model plus the local frame with 16 neural
parameters and jointly train a 4-layer fully-connected network that
transforms the neural parameters into GGX ones and the local
frame [Xu et al. 2023], for each database sample. Compared with the
original model, this sample-specific neural BRDF reparameterization
is more amenable for deep learning and results in higher-quality
reconstructions. The network is trained for 80K iterations with a
learning rate of 10−3 and a batch size of 128. By the end of the
training, we obtain the fitting result as a by-product, and store
them as final texture maps. Note that some discontinuities can be

observed in the tangent maps (e.g., Fig. 8). This is mainly due to the
isotropic nature at certain locations: in an ideally isotropic case, any
unit vector orthogonal to the normal can be selected as the tangent,
since it has no effect on the final rendering.
We observe that in certain cases, the reflectance quality slightly

degrades, after fitting to the GGX model from the latent vectors, as
shown in Fig. 9. Therefore, we store the intermediate latent vectors
along with GGX parameters in the database, and leave it for future
work to find the optimal representation for our captured data (e.g.,
specialized models [Jin et al. 2022; Liu et al. 2016]) or recent neural
ones [Fan et al. 2022; Zheng et al. 2021].
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Photo

SSIM/PSNR

Neural Rep.

0.97/35.60

Error(5x) GGX BRDF

0.93/30.96

Error(5x)

SSIM/PSNR 0.98/36.40 0.96/26.92

255

0

Fig. 9. Comparison of GGX BRDF and our neural representation. For each
row, the 1st column is a photograph. The 2nd and 4th columns are the
rendering results of neural and GGX BRDF representation. The 3rd and 5th
columns are color-coded differences (multiplied by 5).

7.3 Discussion

While fitting our sparse measurements from scratch seems to be a
viable option, it is not feasible in practice due to the highly under-
constrained nature of the problem [Gao et al. 2019]. Bridging the
information gap between sparse measurements and the final result
requires additional prior knowledge. In our case, the trained net-
work serves as an effective learned prior for the reconstruction. On
the other hand, direct parameter regression is not suitable either.
Existing techniques cannot regress anisotropic BRDF parameters
with high precision, with tangent/roughnesses being particularly
challenging, according to our experience.

8 ADDITIONAL DETAILS

Two-view Alignment. To prepare the input for our network, we
align the secondary view to the primary in a coarse-to-fine manner.
First, 2-view photographs of the sample under uniform lighting are
taken. With the help of ARTags, we compute a homography ma-
trix to roughly warp the secondary view to the primary. To further
improve the precision, we compute dense 128D SIFT features [Liu
et al. 2011] on the primary view and the warped image. Finally,
PatchMatch [Barnes et al. 2009] based on the SIFT feature is ap-
plied (iterations=10, patch size=7, search radius=50) to establish
more accurate correspondences between the two views. The impor-
tance of careful 2-view alignment over the final reconstructions is
demonstrated in Fig. 10.

SSIM/PSNR 0.98/32.04 0.96/29.86

Fig. 10. Impact of accurate 2-view correspondences. From the left to right:
a photograph, the rendering result of a reconstructed sample with/without
dense SIFT feature matching.

Front Lit Back Lit Transparency Rendering

Fig. 11. Transparency Estimation. From left to right, the photograph lit
from above the upper hemisphere of the sample/from the bottom side of
the setup, the computed transparency map, and the rendering result on a
material ball with the fitting results and the transparency map.

Transparency Estimation. We follow the work of [Gardner et al.
2003] to compute per-pixel transparency for each physical sample,
by taking an additional image with all 4,096 LEDs from the bottom
side of the setup switched on. The measurement at each pixel in
this image, divided by its counterpart in another pre-captured pho-
tograph with the sample removed, yields the percentage of light
transmitted. We store this result as a transparency map. An example
is illustrated in Fig. 11.

9 DATABASE

With our integrated system, we build OpenSVBRDF, the first large-
scale database ofmeasured anisotropic SVBRDFs. Readers are strongly
encouraged to first view the accompanying video, which demon-
strates the rendering results of 135 samples (out of 1,000 total sam-
ples) with novel, changing view and lighting conditions.

Physical Samples. We collect them by purchasing sample books
or individual samples from online vendors, most of which come
from manufacturers that supply home decoration/furniture/fashion
industry.

Timing. All computation is done on a workstation with dual Intel
Xeon 4210 CPUs, 256GB DDR4 memory and 4 NVIDIA GeForce
RTX 3090 GPUs. It takes about 40 hours to train our network, with
0.5 million iterations.
For each physical sample, it takes about 15 minutes to capture

all 193 HDR photographs using exposure bracketing: 2 minutes for
64×2 (views) photographs under learned patterns, 12 minutes for
64 images under effective linear light sources and 15 seconds for 1
image with bottom-side LEDs on for transparency estimation. For
processing, it takes on average 5 minutes for our network to decode
all lumitexels from valid measurements, 1.5 hours for fine-tuning
and 20 minutes for fitting GGX parameters and local frames.

Organization. Wegroup all 1,000 samples into 9 categories (see Tab. 1
for details). For each sample in the database, we store 193 raw HDR
photographs (15GB), its intermediate neural representation (290MB),
as well as 6 texture maps (𝜌𝑑 ,𝜌𝑠 ,𝛼𝑥 /𝛼𝑦 ,𝑛,𝑡 and 𝛽) representing GGX

Table 1. Database sample distribution in different categories.

Category # Category # Category #
satin 120 wood 300 paper 100
metal 35 leather 180 ceramic 34
woven 30 fabric 105 wallpaper 96
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parameters, local frames and transparency (55MB). The spatial reso-
lution is 1,024×1,024 for both the neural representation and texture
maps. Please refer to Fig. 8 for a visualization of examples in each cat-
egory. In addition, we record the physical dimensions (width/height)
as well as an online link that can be used to order the physical sample
as meta-data.

Statistics. Our database makes it possible for us to compute and
analyze the distributions of different GGX parameters across sam-
ples in each category/all samples, as shown in Fig. 12. Note that
we have reconstructed 1,000×1,024×1,024 BRDFs in total, which is
more than one billion. It is interesting to note the differences in the
distributions. For example, the asymmetry between the distributions
of 𝛼𝑥 and 𝛼𝑦 in satin/wood/woven suggests the strong anisotropy
in these categories; 𝜌𝑑 for metal is concentrated on the lower end,
which agrees with common observations; the distributions of 𝛼𝑥 ,
𝛼𝑦 and 𝜌𝑠 suggest a narrow, relatively weak highlight in ceramics,
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Fig. 12. Visualization of the statistics of the fitted GGX BRDF parameters.
The x-axis is the range of each parameter, and the y-axis is the percentage.
We calculate the statistics on each category separately, as well as over all
samples in the database.
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0.99/49.41 0.98/39.78 1.00/56.94 0.99/47.44 0.99/37.11

Fig. 13. Reconstruction results of a synthetic anisotropic SVBRDF. The first
row shows various GGX parameter maps of the sample, and the second
displays our reconstruction. The quantitative error of our results with respect
to the ground-truth are reported in the bottom in SSIM/PSNR.

which actually comes from the glazing layer often found in these
materials.

10 VALIDATIONS

10.1 Latent Optimization

We validate the quality of the latent optimization (Sec. 7.1) by com-
paring the rendering with the latent result against a photograph
under a novel effective linear light, which is not used in training.
The average SSIM between the photograph and the rendering across
all 1,000 samples in our database is 0.98. For visual inspection, please
refer to Fig. 15, where one sample from each category is displayed.

10.2 Reflectance Fitting

Correctness. We perform a virtual acquisition and reconstruction
experiment on a challenging synthetic anisotropic SVBRDF to vali-
date the correctness of the final fitting results. The synthetic sample
consists of a mixture of different ramps of GGX parameters, as
shown in the first row of Fig. 13. We apply physically-based ren-
dering to simulate the measurements of this sample with a virtual
device whose parameters are identical to the real one, and then
reconstruct from the measurements and fit GGX parameters, ac-
cording to the pipeline described in Fig. 2. Our approach almost
exactly recovers all parameters (Fig. 13).
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Fig. 14. Visualization of densely sampled, effective view and lighting condi-
tions, which are used in the validation experiments described in the supple-
mental material. A hemi-cube parameterizaion of the unit upper hemisphere
is used. Each sample is marked with a green cross. Note that for lighting,
each sample represents a direction towards the center of a group of 8×8
LEDs.

ACM Trans. Graph., Vol. 42, No. 6, Article 254. Publication date: December 2023.



254:10 • Xiaohe Ma, Xianmin Xu, Leyao Zhang, Kun Zhou, and Hongzhi Wu

satin wood paper metal leather ceramic woven fabric wallpaper

0.97/34.57 0.98/37.52 0.97/34.94 0.99/37.93 0.96/39.20 0.98/34.49 0.99/42.80 0.99/35.47 0.99/40.94

Fig. 15. Photo validation results. The top row shows photographs of physical samples, and the bottom displays the rendered images of the reconstructed
results from our neural representation. The quantitative errors of our results with respect to the photographs are reported in the bottom row in SSIM/PSNR.

satin wood paper metal leather ceramic woven fabric wallpaper

0.90/27.36 0.97/37.17 0.98/34.53 0.99/44.54 0.96/34.43 0.98/38.93 0.97/38.12 0.98/45.61 0.96/34.43

0.90/28.41 0.93/33.46 0.95/28.36 0.95/40.70 0.96/36.26 0.95/35.48 0.95/38.40 0.94/40.09 0.97/35.59

Fig. 16. Photo validation of our BRDF fitting results at two views. The first/third row shows photographs of physical samples at the primary/secondary
view, and the second/fourth lists the corresponding renderings using our final BRDF parameters. The quantitative errors of our results with respect to the
photographs are reported in the bottom of each rendered image in SSIM/PSNR.

Primary & Secondary Views. We also validate the rendering results
of our reconstructions against photographs under novel lighting
conditions from both the primary and secondary views in Fig. 16.

Additional View& Lighting Conditions. Tomore thoroughly assess
the result quality of our approach, we further conduct photograph
validation experiments on 560 pairs of view and lighting conditions
that vary considerably over the upper hemisphere. The distributions
of effective view/lighting conditions are visualized in Fig. 14. The
average SSIM over all pairs of view and lighting conditions ranges
from 0.90 to 0.97 among all 9 physical samples. Due to the space
limit of the main paper, please refer to the supplemental material
for more details on our experiments and results.

11 APPLICATIONS

We demonstrate the value of our database in the following three
applications.

11.1 Material Generation

We follow MaterialGAN [Guo et al. 2020] to train StyleGAN2 [Kar-
ras et al. 2020] on our captured data, to implicitly learn an SVBRDF
manifold for novel material generation and material morphing. Two
modifications are made: first, we increase the output resolution
from 256×256 to 512×512 to make better use of our high-resolution
database; second, we extend their work to support anisotropic re-
flectance.
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Fig. 17. Rendering results of the generated materials by randomly sampling
in the latent space of each MaterialGAN trained on a different category.
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Fig. 18. Material interpolation in the latent space of each MaterialGAN
trained on a different category. Each row shows plausible morphing results
between pairs of generated materials.

Specifically, we train a StyleGAN2 for each of the three categories
in OpenSVBRDF: leather, wood and metal. To generate sufficient
training data, we take each database sample with a resolution of
1,024×1,024, and randomly crop, scale and rotate to obtain 30 smaller
training SVBRDFs at a 512×512 resolution. The training texture
maps are stacked in 14 channels (3 for 𝜌𝑑 , 3 for 𝜌𝑑 , 2 for 𝛼𝑥 and 𝛼𝑦 ,
3 for 𝑛 and 3 for 𝑡 ). We slightly modify the original StyleGAN2 to
output 14 channels as well. For normal and tangent, we add an extra
normalization layer to force the network to output unit vectors.
We use the official PyTorch implementation of StyleGAN2 and the
same training settings as MaterialGAN. The discriminator is shown
4 million images. It takes about 36 hours to train a StyleGAN2 for
one category of samples.
Fig. 17 displays the rendering results of a variety of SVBRDFs,

generated by randomly sampling the MaterialGAN latent space.
Note that we use the Gram-Schmidt process to re-orthogonalize the
output normal and tangent. In Fig. 18, we also show plausible mor-
phing results between pairs of generated materials, by interpolating
in the latent space of each category.

11.2 Material Classification

We further apply OpenSVBRDF to material classification with un-
controlled and controlled illumination.

First, we use our database to enhance one state-of-the-art single-
image material classification technique [Mao et al. 2021], originally
trained and tested on the Flickr Material Dataset (FMD) [Sharan
et al. 2009]. Specifically, we follow [Weinmann et al. 2014] to syn-
thesize training images, by rendering our database samples from 3
selected categories (detailed below) with randomly generated view
and lighting conditions. In training a 3-category classifier, these
additional images will be used with a probability of 30% and the
original images from FMD with 70%. In comparison, we also train
a classifier with augmented data from UBO2014 [Weinmann et al.
2014] in exactly the same way described above. Note that the cat-
egories fabric, wood and leather are selected, because they are
the only 3 common ones among FMD, UBO2014 and OpenSVBRDF.
The average test accuracies on the same 10 test sets are 89.37% (orig-
inal, trained on FMD only), 90.74% (augmented with UBO2014) and
92.80% (augmented with ours). The results show that the rich data
in OpenSVBRDF is helpful to boost the performance of single-image
material classification.
Next, we exploit OpenSVBRDF for material classification with

controlled lighting, a task simply not possible with a conventional
2D image database like FMD. First, our database samples in the
aforementioned 3 categories are split for training/test with a ratio
of 1:1. We then compute the lighting patterns to perform one-vs-all
classification among 3 categories as in [Gu and Liu 2012]. Specifi-
cally, we train 3 discriminative lighting patterns 𝑤1,2,3 for 3 cate-
gories with simple linear SVM classifiers. All negative values are
moved to a 4th pattern, resulting in𝑤− = −min(0,𝑤1,𝑤2,𝑤3), and
𝑤+
𝑘
= 𝑤𝑘 +𝑤−, 𝑘 = 1, 2, 3. Per-pixel classification can be conducted,

taking as input the pixel measurements under 4 learned patterns
𝑤+
1,2,3 and𝑤

− . Finally, we determine the image classification result

𝑤+
1 𝑤+

2 𝑤+
3 𝑤− Environment
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Fig. 19. Examples of material classification with active lighting. The top row
is the computed lighting patterns to perform one-vs-all classification among
3 categories, and an environment map for rendering images with passive
illumination. The next three rows are three cases, which a single-image
deep classifier fails to produce correct results while a linear SVM classifier
succeeds using 4 input images under active lighting for each case.
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from the majority of per-pixel results. In comparison, a deep classi-
fier [Mao et al. 2021] is solely trained on synthesized images from
the same training samples with random lighting conditions. The
average test accuracies are 83.25% (uncontrolled illumination, deep
network) and 90.10% (learned lighting patterns, linear SVM). More-
over, three examples are shown in Fig. 19: while the deep classifier
fails to classify any of them correctly, learned patterns probe more
physical information which lead to correct results in all cases using
simple SVM classifiers.

11.3 Optimized BRDF Sampling

Finally, we harness the implicit prior in our dataset for optimized
anisotropic BRDF sampling. Two common forms of acquisition ge-
ometries are studied: directional sampling and illumination multi-
plexing.
We first investigate BRDF sampling using an extremely sparse

number of lighting directions and a fixed view direction with an
elevation angle of 45◦. Specifically, we generate anisotropic BRDFs
with random 𝜌𝑑 , 𝜌𝑠 , 𝛼𝑥 and 𝛼𝑦 sampled from our database. The
normal/tangent/position is fixed to a canonical value, as is common
in previous work [Filip et al. 2014]. These BRDFs are split into
training/test with a ratio of 4:1. Next, we modify [Kang et al. 2018]
with [Xu et al. 2018] to obtain an autoencoder that takes as input the
BRDF values at as few as 4 learned lighting directions and outputs
a 2D BRDF slice at the fixed view direction. After training, the
average test loss (Eq. 3) is 12.67. In comparison, we replace the
training data with 𝜌𝑑 and 𝜌𝑠 sampled uniformly at random, and 𝛼𝑥
and 𝛼𝑦 sampled uniformly at random on the log scale, in the range
of the parameters computed from the entire database, similar to
previous work like [Kang et al. 2018]. The autoencoder trained with
such data results in an average test loss of 28.35. Fig. 20 visualizes
the performance of two autoencoders: the one trained with the
database distribution produces a considerably higher quality, both

Ground-truth Database Distribution Uniform Sampling

22.04 33.32

15.37 295.02

11.14 17.43

Fig. 20. Reconstruction results of two autoencoders using optimized direc-
tional sampling. For each pair of images, the left is a lumitexel and the right
the rendering result from a BRDF fitted to the lumitexel. From the left to
right: ground-truth, the reconstructions of [Kang et al. 2018] trained with
the BRDF distribution in our database/GGX parameters sampled uniformly
at random. The numerical errors, computed using Eq. 3, are listed in the
bottom-right corner of each related image. All predicted lumitexels are the
direct network output prior to fitting. The optimized lighting directions are
marked as green crosses.

16.62 4.86 24.43 2.40 55.51 17.30

12.49 6.47 30.88 3.92 127.69 23.07

52.26 26.51 162.25 58.25 113.77 38.43

Fig. 21. Reconstruction results of three autoencoders using optimized illu-
mination multiplexing. The top row is the ground-truths, and the 2nd/3rd
row is the predicted lumitexels of autoencoders [Kang et al. 2018] trained
using the database distribution with 32/10 lighting patterns. The 4th row
is the results of the autoencoder trained with GGX parameters sampled
uniformly at random with 32 lighting patterns.

qualitatively and quantitatively; its optimized lighting directions
are also more evenly distributed in the angular domain.

Moreover, we apply a similar idea to improve illumination - mul-
tiplexed sampling of anisotropic BRDFs, when a dense set of light
sources are available to be programmed simultaneously. Similar to
the previous experiment on directional sampling, we generate two
training sets and one test set, with the exception that the position is
randomly sampled and the normal/tangent is either sampled accord-
ing to our database distribution, or randomly sampled as is common
in related work [Kang et al. 2018]. We optimize different versions
of autoencoders [Kang et al. 2018] with the two training sets. The
test losses are 27.69 (#patterns=32, uniform sampling), 23.81 (#pat-
terns=10, database distribution), 10.78 (#patterns=32, database dis-
tribution). With the same number of lighting patterns, our database
distribution helps improve the reconstruction quality considerably,
compared with a uniform sampling; also the number of lighting
patterns can be reduced to less than 1/3 for similar-quality results.
Please refer to Fig. 21 for a visualization.

12 LIMITATIONS AND FUTURE WORK

This work is subject to a number of limitations. First, our samples
are limited to be near-planar, as we cannot handle large structures
that cause inter-view visibility changes. Increasing the number of
cameras along with network modifications might be a viable solu-
tion. Next, following existing work, our modeling of sub-surface
scattering is highly simplified. It will be useful to perform differ-
entiable rendering with a more advanced model like BSSRDF. In
addition, the current selection of lighting patterns for fine-tuning
is empirical. It will be intriguing to systematically investigate opti-
mal fine-tuning patterns, to further reduce the number of captured
images and improve reconstruction quality.

In the future, we plan to expand the database with more samples
that exhibit diverse appearances. We are also interested in setting
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up open challenges (e.g., on material estimation, classification, gen-
eration): standardized benchmarks based on our growing dataset
might be useful to quantitatively evaluate existing as well as future
research on a common ground. Finally, we are excited to build a
large-scale measured database with both high-quality appearance
and shape in the near future.
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