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Figure 1: Given a target large-scale material, our inverse appearance solver efficiently searches through precomputed small-scale material
and geometry libraries. Then it returns a few small-scale materials and geometries as results, which approximate the target large-scale
appearance when combined.

Abstract

One major shortcoming of existing bi-scale material design sys-
tems is the lack of support for inverse design: there is no way to
directly edit the large-scale appearance and then rapidly solve for
the small-scale details that approximate that look. Prior work is ei-
ther too slow to provide quick feedback, or limited in the types of
small-scale details that can be handled. We present a novel com-
putational framework for inverse bi-scale material design. The key
idea is to convert the challenging inverse appearance computation
into efficient search in two precomputed large libraries: one in-
cluding a wide range of measured and analytical materials, and
the other procedurally generated and height-map-based geometries.
We demonstrate a variety of editing operations, including finding
visually equivalent details that produce similar large-scale appear-
ance, which can be useful in applications such as physical fabrica-
tion of materials.
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1 Introduction

Deriving large-scale materials from small-scale details is a power-
ful appearance modeling technique. From a physical point of view,
the large-scale look is determined by averaging the appearance of
small-scale details [Bruneton and Neyret 2012]. Previous work has
succeeded in modeling a wide range of real-world materials, from
velvet [Westin et al. 1992], brushed metal [Ashikmin et al. 2000],
to woven fabrics [Zhao et al. 2011].

Recently, researchers further pushed the idea by introducing inter-
active bi-scale material design [Wu et al. 2011; Iwasaki et al. 2012]:
the user can manipulate both the small-scale material and geome-
try; the corresponding change on the large-scale appearance is then
rapidly computed. However, one major limitation in existing work
is that, the editing operations can only be applied to the small-scale
details. There is no way to directly design the large-scale appear-
ance, and then automatically find small-scale details to approximate
it. Tedious trial-and-error on the small-scale is needed to achieve
even simple edits on the large-scale appearance.

To address the above problem, we would like to build an inverse
bi-scale material design system, which turns out to be highly chal-
lenging: first, there is a large number of degrees of freedom in
the small-scale materials and geometries, making it difficult to ef-
ficiently solve for the optimal result in this huge space; second,
due to the visibility factor, the effect of small-scale geometry over
the large-scale appearance is both non-linear and non-local; more-
over, inverse bi-scale material computation is an ill-posed problem,
as there might be multiple small-scale materials and geometries,
which correspond to similar appearance on the large scale [Han
et al. 2007]. Previous papers in this field (e.g., [Weyrich et al.
2009]) solve sophisticated non-linear optimization problems, a pro-
cess that is far from interactive. In addition, existing approaches
(e.g., [Ershov et al. 2004]) handle very limited types of materials
and geometry. It is non-trivial to extend these frameworks to more
general cases.

This paper presents a novel appearance computational framework
for inverse bi-scale material design. Inspired by previous work
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based on large databases [Hays and Efros 2007], we precompute
a material library and a geometry library, which include a wide
range of small-scale materials and geometries. We also propose
a search algorithm to find desired small-scale details in these two
large libraries, unlike existing approaches that directly optimize for
unknown small-scale materials and geometries (e.g., [Weyrich et al.
2009]). Our algorithm typically computes results in a few seconds,
while previous work requires a couple of hours. The key to the ef-
ficiency is that we only evaluate a few representatives, which are
obtained by exploiting the intrinsic relationships among all materi-
als / geometries in the libraries and then apply CX matrix decom-
position [Drineas et al. 2008].

Our design system can also find visually equivalent details, which
are different small-scale details that produce similar appearance on
the large scale. Potentially, this could be very useful for applica-
tions such as appearance fabrication, where multiple practical con-
straints need to be considered. Moreover, one may use our sys-
tem for building exterior design, to edit the looks of a building that
change with view distances.

In summary, this paper makes the following contributions:

• We present the first near-interactive inverse bi-scale material
design system, the core of which is a novel inverse appear-
ance computational framework. We convert the solving of a
sophisticated optimization problem as in previous work, into
a search in large precomputed libraries, which is both faster
and more general.

• Our work completes bi-scale material design, by adding the
key functionality missing in previous forward design sys-
tems [Wu et al. 2011; Iwasaki et al. 2012], which frees the
designers from manual trial-and-error.

• We build a large library of small-scale geometry, consisting
of over 164,000 pieces of procedurally-generated and height-
map-based geometry. The wide variety in our library makes it
a valuable database for future research in computer graphics
and computer vision.

Terminology. We follow the terminology of large/small-scale from
previous work [Wu et al. 2011; Iwasaki et al. 2012], instead of us-
ing micro/milli-scale. Our method will work as long as the ratio
between the large and the small-scale is big, and the small-scale is
greater than the wavelength of light.

2 Previous Work

Modeling Large-scale Appearance from Small-scale Details.
Microfacet BRDFs (e.g., [Cook and Torrance 1982; Oren and Na-
yar 1994; Ashikmin et al. 2000]) are modeled by statistical dis-
tributions of the orientations and shadowing of perfectly specular
or Lambertian facets, assuming no correlations between the two
factors. Wang et al. [2011] propose a dual-scale statistical model
for stationary, isotropic indoor surface appearance. More complex
appearance can be modeled by explicitly constructing the small-
scale structures, and then performing an expensive simulation of
light interactions [Westin et al. 1992; Gondek et al. 1994]. Zhao et
al. [2011] extends the idea to volumetric appearance models, using
results from micro CT imaging. Previous work in this field focuses
on the analysis, rather than the synthesis, of small-scale details.

Appearance Fabrication. Weyrich et al. [2009] use a milling ma-
chine to fabricate a height-field. Its effective large-scale appearance
closely matches a custom reflectance distribution function. The
idea is further pushed to realize custom subsurface scattering prop-
erties [Hašan et al. 2010; Dong et al. 2010]. In addition, prototyping
printers are developed [Matusik et al. 2009; Malzbender et al. 2012]

to produce reflectance distribution functions on a sheet of paper, or
a special structure with spherical dimples. The goal of [Ershov et al.
2004] is similar to ours. They propose a reverse engineering method
to figure out pigment composition that approximates a designated
paint appearance. Concurrent to our work, Lan et al. [2013] fabri-
cate large-scale spatially-varying anisotropic BRDF, by printing an
optimized height-field coated with glossy inks. Unfortunately, ex-
isting work is not directly applicable to our problem, either because
the speed of algorithms is not suitable for interactive design, or be-
cause the methods cannot be easily generalized to handle the wide
range of materials and geometry that we process.

Interactive Appearance Design. Significant research effort has
been devoted to the development of interactive single-scale appear-
ance design (e.g., [Pellacini and Lawrence 2007; Lawrence et al.
2006; Ben-Artzi et al. 2006]), which supports rapid visual feed-
back by exploiting factors like fixed lighting and/or geometry. Bi-
scale material design systems [Wu et al. 2011; Iwasaki et al. 2012]
quickly compute the large-scale appearance from small-scale de-
tails. However, they do not support editing in the reverse direction.
Manual trial-and-error is required to find small-scale details that
achieve an equivalent large-scale appearance change. Moreover, it
is not clear to the designer if a better solution exists.

Inverse Rendering. One major goal for inverse rendering algo-
rithms (e.g., [Ramamoorthi and Hanrahan 2001; Marschner et al.
1999]) is to estimate reflectance properties from photometric mea-
surements, typically with known geometry and illumination. When
both the lighting and BRDFs are unknown, additional assumptions
are needed to resolve the ambiguity. Recently, Romeiro and Zick-
ler [2010] tackle this problem, by assuming a statistical distribution
of natural illumination. While our problem can be viewed as gener-
alized inverse rendering, and we have similar small-scale material-
geometry ambiguity, it is unclear how to extend previous work to
inverse bi-scale appearance computation, where the known func-
tion is 4D (large-scale BRDF) and the two unknown factors are 4D
(small-scale BRDF) and 6D (small-scale geometry), respectively.

3 Preliminaries

The effective large-scale appearance, fr , is computed as the inte-
gral of the product of a rotated isotropic BRDF f and a Bidirec-
tional Visible Normal Distribution Function (BVNDF) γ, defined
on the small scale [Wu et al. 2011; Iwasaki et al. 2012]:

fr(ωi,ωo) =

∫
S2

f(n,ωi,ωo)γ(n,ωi,ωo)dn, (1)

where

f(n,ωi,ωo) = fr(n,ωi,ωo)(n · ωi), (2)

γ(n,ωi,ωo) =
(n · ωo)
av(ωo)

∫
A

V (ωi)V (ωo)δ(n− n′)dA. (3)

Here fr is a small-scale BRDF, ωi is the lighting direction, and ωo
is the view direction. S2 is the unit sphere, V is the visibility func-
tion, A is a surface patch, and av(ωo) is the visible projected area
ofA alongωo (see Fig. 3 in [Wu et al. 2011] for an illustration). n′

is the normal associated with dA. Note that compared to the orig-
inal definition of f and γ in [Wu et al. 2011; Iwasaki et al. 2012],
we slightly moved a few terms around in order to apply the same
idea to solve for materials and for geometry (Sec. 4). Throughout
this paper, we assume that BRDFs (e.g., fr) are spectrally-averaged
single-channel functions. Details about how to handle spectral in-
formation are described in Sec. 4.2.



3.1 BVNDF and BRDF Representations

We propose high-precision representations that are inspired by all-
frequency rendering under environment map illumination [Green
et al. 2006], where the BRDF is fitted with lighting- and view-
dependent Gaussian lobes, and the environment map is prefiltered
for different lobes. First, we represent a BVNDF as a linear combi-
nations of von Mises-Fisher (vMF) distributions [Han et al. 2007]
at different view and lighting directions. For a particular directional
pair, γ is represented as:

γ(n) =
∑
j

αjρ(n;κj ,µj). (4)

Here κj is the inverse width, µj is the central direction and αj is
the corresponding weight. ρ(·) is a Gaussian-like probability distri-
bution over the unit sphere:

ρ(n;κ,µ) =
κ

4π sinh(κ)
eκ(n·µ). (5)

Using vMFs allows us to compactly represent all-frequency normal
distributions, including δ-like spikes. For each lobe, only α, κ and
µ are stored. Please refer to Fig. 5 for an example.

Next, we represent a BRDF as prefiltered responses with respect
to vMF lobes of various sizes and orientations. To be specific, we
substitute Eq. 4 into Eq. 1, which yields:

fr(ωi,ωo) =
∑
j

αjF (ωi,ωo, κj ,µj), (6)

where

F (ωi,ωo, κ,µ) =

∫
S2

f(n,ωi,ωo)ρ(n;κ,µ)dn. (7)

Here F is our BRDF representation, which contains all the infor-
mation about the small-scale BRDF, in order to compute fr . In
practice, we store F as a mipmap: each of its elements is the pre-
computed product between f and vMFs of different µ and κ. Es-
sentially, computing fr becomes multiple look-ups in the precom-
puted mipmap. One issue here is that F is 7D, which is difficult
for efficient storage. In the appendix, we show how to reduce the
dimensionality of F to 4, using a half-angle parameterization.

Note that our framework is independent of the underlying
BVNDF / BRDF representations. We choose the current ones, after
balancing precision, compactness and efficiency. Other represen-
tations (e.g., [Iwasaki et al. 2012]) might also be employed under
different circumstances.

4 Inverse Bi-scale Appearance Computation

Given a target large-scale BRDF f̂r , our goal is to solve for the
small-scale geometry γ and material fr , which best approximate
f̂r when viewed on the large-scale:

argmin
γ,fr

d(f̂r, fr), (8)

where

d(f̂r, fr) =

∫
Ω

∫
Ω

||f̂r(ωi,ωo)− fr(ωi,ωo)||
2dωidωo. (9)

To find the optimal fr in Eq. 8, we need to solve for two unknown
functions according to Eq. 1, which is highly challenging. There-
fore, we first introduce two simple inverse solvers, which only solve
for geometries (Sec. 4.1) or materials (Sec. 4.2), while fixing the
other factor. These two solvers are then combined to build a gen-
eral inverse appearance solver in Sec. 4.3.

4.1 Geometry Solver

Directly solving for every single detail of an unknown geometry is
difficult, even for a simpler case [Weyrich et al. 2009] than ours,
where shadowing and masking are not considered. It is remarkably
challenging to develop an efficient solver, due to the large num-
ber of degrees of freedom in a piece of geometry, the non-linear
relationship between fr and small-scale geometry, along with the
ill-posedness of the problem.

To address these issues, we precompute BVNDFs for a large ge-
ometry library G, which consists of more than 164K pieces of
procedurally-generated and height-map-based geometry, and di-
rectly search for the optimal geometry that approximates the target
appearance:

argmin
γ∈G

d(f̂r, fr). (10)

Inspired by [Hays and Efros 2007], the idea is that we will get use-
ful results, by searching in a sufficiently large library, which in-
cludes a wide variety of small-scale geometry (detailed in Sec. 5).

One naı̈ve search strategy is to enumerate all elements in the library,
and select ones whose large-scale appearance differs the least from
our target, according to Eq. 10. However, this is not efficient, espe-
cially when the size of the library is large. Ideally, we would like to
find a few representatives, then quickly compute approximation er-
rors for all elements in the library, by just evaluating these represen-
tatives. To do this, we employ CX matrix decomposition [Drineas
et al. 2008], which is a randomized algorithm for approximating a
matrix using its original column vectors, with theoretical relative-
error guarantees.

Specifically, we first discretize each γ (Eq. 3) with sufficient sam-
pling rate, the results of which are assembled into a vector. Please
see Sec. 5.2 for more details. Next, we construct a matrix B, by
assigning each discretized γj to a column vector bj . Then, we ap-
ply CX decomposition to B as B ≈ CX . Here C contains a few
original column vectors from B. The column number of C is the
minimum number that results in a user-specified approximation er-
ror. Now bj can be expressed as a linear combination of columns
from C:

bj ≈
∑
k

bc(k)Xkj , (11)

Note that c(k) indicates that the k-th column of C is from column
c(k) of B. Fig. 2 illustrates an example.

≈

B C

X

b1 b2 b3 b4 b5 b5b3

Figure 2: CX decomposition. Matrix B is approximated as the
product of C and X , where C consists of a few original columns
from B.

Observe in Eq. 1 that fr is linear with respect to γ, if we fix the
small-scale material. Applying this linearity to Eq. 11 yields:

fr(ωi,ωo; γj) ≈
∑
k

fr(ωi,ωo; γc(k))Xkj . (12)

Now we only need to compute fr(·; γc(k)) for different c(k)

(i.e., representatives). By multiplying with X , we obtain fr(·; γj)



for all geometries in the database, which is significantly faster than
an exhaustive computation of all frs in our experiments.

Finally, we calculate the approximation error with respect to the tar-
get appearance (Eq. 9), for every piece of small-scale geometry γj .
We select a user-specified number of candidates, which are closest
to the target. Then we compute more accurate errors by directly
evaluating fr of the candidates, and sort the results according to
their errors. Note that we precompute c(·) and X for runtime effi-
ciency (Sec. 5.2).

4.2 Material Solver

Designing a material solver is very similar to building a geometry
solver. This is because fixing the BVNDF γ and solving for the
material fr is exactly the dual problem of the geometry solving
process (Eq. 1). Here we treat the F (Eq.18) for each material as a
long column vector, which is then used to construct the matrixB for
CX decomposition, as described in Sec. 4.1. Another modification
is to change the measure of error to account for additional spectral
information:

argmin
fr∈M

(1− β)d(f̂r, fr) + β||λ(f̂r)− λ(fr)||
2. (13)

Note that M is the material library, β is a user-specified param-
eter, which indicates the preference over spectral difference or
spectrally-averaged reflectance difference, and λ is the color of an
original RGB-channel BRDF, averaged over different lighting and
view directions.

4.3 General Solver

Having developed two solvers for a single unknown factor, it
is straightforward to combine them to solve the general prob-
lem, where both the small-scale material and geometry are un-
known. Starting with an initial fr or γ (randomly selected or user-
specified), we fix it and alternatively solve for the optimal materi-
als / geometries. Once a solver returns results, the best candidate is
set as a constant for the other solver, and vice versa. This process is
repeated until convergence or a user-specified condition is met.

5 Precomputation

5.1 Material Library Construction

For the material library, we include 100 measured BRDFs from the
MERL database [Matusik et al. 2003]. Due to the narrow range
of real-world materials that the MERL database covers, we en-
large our library by adding Ward, Blinn-Phong and Cook-Torrance
BRDFs [Dorsey et al. 2007]. These analytical BRDFs are created
by randomly sampling their corresponding parameters, and then
mixing with Lambertian lobes of different magnitudes. The total
number of distinct BRDFs is 4,101. For every material, we com-
pute its prefiltered mipmap F (Eq. 18) and the average color λ.
Moreover, we increase the spectral variation in the library by color-
shifting each existing BRDF to 200 randomly sampled colors, re-
sulting in 4, 101× 201 = 824K effective materials. Essentially, we
are limited by the availability of measured BRDFs in the public do-
main. As techniques in appearance measurement advance, we hope
that more measured materials can be added to our library to replace
artificial ones.

Before computing for material representatives, we perform PCA
to the original matrix B to exploit its numerical coherence, which
helps speed up a subsequent CX decomposition (Sec. 4.1). As the

size ofM is relatively small (4K distinct BRDFs), we directly com-
pute the co-variance matrix, and perform standard SVD-based com-
pression using LAPACK, by keeping 99.9% of the original energy.
The result is B ≈ UBΣBV

T
B , where UB and V TB are orthonormal

matrices, and ΣB is a diagonal one. We then apply CX decom-
position on the smaller-sized UBΣB , instead of B. Since UBΣB
approximately preserves the inner products among column vectors
in B, our CX decomposition result is close to that of B.

5.2 Geometry Library Construction

Figure 3: Geometry samples for constructing our BVNDF library.
The top row shows procedurally-generated geometries; the rest are
derived from height maps.

Our geometry library is composed of procedurally-generated and
height-map-based geometries, as illustrated in Fig. 3. For proce-
dural geometry, we use random parameters as input to predefined
procedural geometry generators (e.g., grooves, bricks and rods) to
directly create triangular meshes. Note that some of the results are
non-height-field geometries. On the other hand, we harness a large
number of existing high-quality textures, such as Brodatz [1999]
and Mayang [2013] texture databases, to generate height-map-
based geometries (see Fig. 4 for an illustration). Specifically, for
each texture, we first convert it to a grey-scale image and down-
sample to 512 × 512; next, we sample a few small patches of
128×128; for each patch, Fast Fourier Transform is used to remove
the low-frequency components; we then apply histogram equaliza-
tion; finally, triangular meshes are generated from the patches by
applying different amplitudes. The total number of geometries is
164,431. For every piece of geometry, we render it on the GPU
with different lighting and view directions to get its BVNDF, which
is then fitted with vMFs, using the Expectation Maximization al-
gorithm [Han et al. 2007]. Please refer to Fig. 5 for an example.

We mentioned the discretization of γ in Sec. 4.1. In practice, it
would require significantly high sampling rate, in order to discretize
any δ-like lobe in γ with high precision. To tackle this issue, we
classify BVNDFs into two categories: specular and non-specular
ones. Specular BVNDFs contain a non-negligible number of δ-
like vMFs. They are not discretized, or processed with CX decom-
position. During runtime, we directly evaluate fr for all specular
BVNDFs. For non-specular ones, we discretize them and assem-
ble the results as a matrix B (Sec. 4.1). However, the size of B is
7.7TB, which is too big for efficient processing. In order to reduce
its size, our first step is to restrict ωi to only 7 directions, quasi-
randomly distributed over the upper hemisphere. We find that 7 is
an adequate number for sampling ωi, which will be demonstrated
in Sec. 7 & 8. The reduced matrix is now 614.4GB. Next, similar to
material library construction, we perform SVD-based compression
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Figure 4: Populating geometry for our library. For procedural ge-
ometry, we generate various instances by randomly sampling the
corresponding parameters. For height-map-based geometry, we
first transform textures into gray-scale patches, which are then con-
verted to small-scale geometry by applying different amplitudes.

on the reduced matrix, to further exploit data coherence. Specifi-
cally, we employ the state-of-the-art random projection technique
with power iterations [Halko et al. 2011] to compress such a big
matrix. The size of the compression result is 1.5GB, while still re-
taining 99.0% of the original energy. Finally, CX decomposition is
applied to find BVNDF representatives, as well as the weights to
express all BVNDFs.

6 Implementation Details

Sampling f̂r . When measuring the approximation error using Eq. 9
in practice, we need to sample the bidirectional domain and cal-
culate the error at these sampled directional pairs. Recall that in
Sec. 5.2, we restrict the lighting directions in BVNDFs to 7 differ-
ent ωis only. Thus we sample ωi from these directions. In terms
of ωo, we would like to sample them such that the main features of
the target appearance are captured. After experiments, we choose
to sample ωo using a mixture of two strategies: uniform random
sampling, and importance sampling based on the norm of the gra-
dient of f̂r . The former strategy makes sure that every direction has
a non-zero probability of being sampled, while the latter one cap-
tures the changes in the angular domain, which are characteristic
features of a BRDF in our experiments.

Weighting BRDF Samples. Since we exploit linearity in our
derivation (Eq. 12), we could not use a non-linear, more percep-
tually meaningful norm (e.g., [Matusik et al. 2003]), when measur-
ing the error between the target BRDF and our solution. Directly
using Eq. 8 generates solutions which focus on features with high
numerical values, such as specular highlights. Other perceptually
important features with low BRDF values, like the diffuse lobe,
might not be well matched. To alleviate this problem, we add non-
uniform weights to Eq. 9, so that d(f̂r, fr) becomes:∫

Ω

∫
Ω

||w(ωi,ωo)
[
f̂r(ωi,ωo)− fr(ωi,ωo)

]
||2dωidωo,

(14)
where w(ωi,ωo) is defined as:

w(ωi,ωo) =
1

4
√
pωi(ωo)

(15)

Here pωi(ωo) is the probability of samplingωo givenωi, using the
aforementioned sampling method. The idea is to put more weights

render
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vMF-based

BVNDF
…

small-scale

geometry

Figure 5: Computing and fitting a BVNDF. A piece of geometry is
directly rendered on GPU, to compute its visible and unshadowed
normal distributions under different illumination and view direc-
tions (i.e., BVNDF). The results are then fitted using a few vMF
lobes, which compactly represent the raw data. Here we visualize a
normal distribution by projecting the upper hemisphere onto a 2D
plane.

on diffuse lobes compared to uniform weighting, which aligns bet-
ter with our perception of materials [Matusik et al. 2003].

Handling BVNDF rotations. If a piece of geometry is rotated
along the normal direction, its corresponding large-scale appear-
ance is likely to be different, especially when the geometry con-
tains anisotropic features, such as grooves (see bottom two rows
of Fig. 7 for examples). To account for this rotation effect in our
framework, one natural idea is that, for every piece of geometry,
explicitly rotate it to a few angles, compute its BVNDF, and per-
form SVD followed by CX decomposition on the union of all ro-
tated geometry. However, there are two major drawbacks: first, the
size of the library becomes much larger, which grows linearly with
the predefined number of rotations; second, the number of rotations
are fixed in precomputation and cannot be changed afterwards. To
address these issues, we postpone the rotation to runtime and ro-
tate the target large-scale appearance accordingly, which is equiva-
lent to rotating the small-scale geometry. The user can specify the
number of rotations, ψ, and then rotate the target appearance by
i × 2π

ψ
(i = 0, 1, ..., ψ − 1) before executing the inverse solver.

Here we trade the runtime performance for flexibility and a smaller
footprint of the precomputed library.

7 Inverse Bi-scale Material Design

We present a simple inverse bi-scale material design system, as
shown in Fig. 6, based on our solvers described in the previous
section. A typical workflow is as follows. The designer first loads
a target large-scale BRDF, which is rendered in Fig. 6-a. Then, a
slider-based editing interface (Fig. 6-c) shows up, for adjusting cor-
responding parameters of the target BRDF. Once a desired large-
scale look is specified, the designer can run the inverse appear-
ance solver, to compute for small-scale materials and / or geom-
etry that best approximate the target appearance. After the results
are computed, they are recommended to the designer in the order
of increasing approximation error (Fig. 6-d & e). The designer can



then freely combine the candidate material and geometry to gen-
erate large-scale appearance (Fig. 6-b). Our system renders both
the target and the approximated large-scale appearance side-by-side
for visual comparison. Alternatively, if the designer has some idea
about which small-scale material to use, she can directly load the
material and then invoke the geometry solver to solve for the best
possible geometry only. The material solver could be used in a sim-
ilar fashion.

The remainder of this section shows a variety of editing operations
using our inverse design system. Please also refer to the accompa-
nying video for editing demonstrations.

a b c

d

e

Figure 6: User interface of our inverse design system. The user
can adjust the target large-scale appearance (a) via a slider-based
interface (c). Our solver then computes several small-scale ma-
terial (d) and/or geometry (e) candidates, which best approximate
the target appearance. The resulting large-scale appearance (b) is
shown side-by-side with the target one for visual comparison.

Angular sharpen / blur. We demonstrate angular sharpen / blur
operations on the target appearance. In the first two rows of Fig. 7,
the large-scale materials are isotropic Ward BRDFs (α = 0.08 for
the first row, α = 0.30 for the second). We fix the small-scale
material as a measured grease-covered-steel BRDF, and employ the
geometry solver to solve for small-scale geometry only. The results
are shown in the second column of Fig. 7. We can see that the small-
scale geometry for the Ward BRDF (α = 0.30) is much rougher
than the other Ward (α = 0.08), which essentially causes more
blur over the angular domain.

Anisotropy. In order to match anisotropic target appearance,
we need to use anisotropic small-scale geometry, since isotropic
BRDFs are assumed on the small-scale. The bottom two rows of
Fig. 7 show two examples. The target large-scale appearance is
anisotropic Ward BRDFs (αx = 0.30, αy = 0.08 for the third
row, and αx = 0.08, αy = 0.30 for the fourth). Following
the previous example, we use grease-covered-steel as the small-
scale material. The geometry solver successfully finds a groove-
like structure, which when combined with the small-scale material,
produces anisotropic reflections on the large-scale. Note that using
the BVNDF rotation method described in Sec. 6, we find the same
piece of geometry for the two different anisotropic Ward BRDFs,
which only differ by a rotation of the local frame.

Our system can handle various forms of the target appearance. In
Fig. 8, the target appearance, as shown on the left, is a measured

target approximation small-scale

geometry

small-scale

material

+

=

=

=

=

Figure 7: Angular adjustments on the target appearance. Left: the
target large-scale materials, from top to bottom, Ward BRDF (α
= 0.08, α = 0.30, αx = 0.30 & αy = 0.08, αx = 0.08 & αy =
0.30). Center: our approximations. Right: the small-scale material
(measured grease-covered-steel) and geometry used to generate the
approximations.

anisotropic BRDF of purple satin from [Ngan et al. 2005], fitted
with the model from [Kurt et al. 2010] to fill in the missing data
in the original measurements. From our general solver, we obtain
interesting results: a Ward BRDF (α = 0.30) with a Lambertian
lobe, and a piece of geometry which resembles a woven pattern.

Brightness. We can also change the brightness of the target ap-
pearance, and then solve for corresponding small-scale material
and geometry in our design system. In Fig. 9, the target materials
are a measured blue-metallic-paint BRDF, whose brightness is de-
creased / increased. The general solver gives interesting results. For
the decreased brightness case, the same blue-metallic-paint BRDF
is picked, and a binary height-map-based geometry is used. The
small-scale structure has a similar-shaped normal distribution as a
plane, since its plateaus and valleys are all planar. Meanwhile, the
valleys receive less light, which results in a decrease of brightness
on the large-scale. For the increased brightness case, a brighter and
more specular blue-metallic-paint2 BRDF is used. It is modulated
with a rough geometry to blur its specularities to match the target
appearance.

Constrast. Similar to its counterpart in image processing, we de-
fine a contrast-adjusted BRDF fr(c, ·) as:

fr(c,ωi,ωo) = (fr(ωi,ωo)− τ)c+ τ. (16)



Figure 8: Inverse solving a measured purple satin BRDF
from [Ngan et al. 2005], shown on the left. The center image is
our approximation. The small-scale details are a measured Ward
BRDF (α = 0.30) with a Lambertian lobe, and a structure similar
to a woven pattern.

Here τ is the average of fr over the bi-directional domain, and
c is a parameter which represents the contrast. For c = 1, we
get the original fr; when c = 0, we have a BRDF that returns
τ for all ωi and ωo. An example of contrast-adjusted appear-
ance is shown in Fig. 10. The target appearance is a measured
light-brown-fabric BRDF, whose contrast is decreased / increased
(top-left / bottom-left image of Fig. 10). We employ the general
solver to find small-scale details that approximate the correspond-
ing looks (polyurethane-foam for decreased contrast, and black-
oxidized-steel of a reddish average color for increased contrast).

Visually Equivalent Details. One interesting point about bi-scale
material design is that different small-scale materials and geome-
try can generate similar large-scale appearance. We define such
small-scale materials and geometry as Visually Equivalent Details
(VEDs). VEDs are potentially important for appearance realization,
in which the user needs to consider many practical issues including
the cost of materials, the structural integrity and the manufacturing
time for the geometry, etc. Exploring VEDs would allow the user
to find the small-scale material / geometry, which is most suitable
for physical fabrication, while maintaining a desired large-scale ap-
pearance.

The inverse design system presented in this paper is, to our knowl-
edge, the first test bed that facilitates near-interactive exploration of
VEDs. Fig. 11 shows an example. The target appearance is a Blinn-
Phong BRDF (n = 60) with a Lambertian lobe. Our system helps
us find a variety of VEDs, as listed in the figure. The result small-
scale materials are, from left to right, Ward(α = 0.16) with a Lam-
bertian lobe, Ward(α = 0.05) with a Lambertian lobe, pickled-oak-
260, gold-paint, Cook-Torrance(m = 0.19, F0 = 0.23) and blue-
metallic-paint2. Note that the color-shifted variants of the original
BRDFs (Sec. 5.1) are selected to match the target spectral distribu-
tion.

8 Results and Discussions

We conducted experiments on a workstation with a quad-core In-
tel i7 3.5GHz CPU, 32GB of memory and a GeForce GTX 660
graphics card. Interactive rendering of appearance during the de-
sign process is shown in the accompanying video.

Precomputation. In terms of each BRDF in the material library,
we precompute two versions of F (Eq. 18): one is the achromatic
version, which is used in the inverse solvers for fast computation;
the other is the chromatic version, which is needed in large-scale
appearance rendering. The size is 23.0MB for one achromatic F ,
and 68.9MB for its chromatic counterpart. The total size of the
material library is 17.9GB.

Figure 9: Adjusting the brightness of the target appearance (mea-
sured blue-metallic-paint). Left: the target large-scale materi-
als. Center: our approximations. Right: the small-scale mate-
rials (from top to bottom, measured blue-metallic-paint and blue-
metallic-paint2) and geometry.

For every piece of geometry in the library, we compute its BVNDF
by rendering the corresponding triangular mesh on GPU using
shadow mapping, for 7, 744 different lighting and view direction
pairs, similar to [Wu et al. 2011]. During rendering, we also du-
plicate the geometry around itself as if it is tiled over a large-scale
surface. Next, eight vMF lobes are used to fit the raw BVNDF data
for each directional pair. This is the most computationally expen-
sive part of the precomputation, which takes about 130 seconds for
one piece of geometry. Due to the large number of geometry in our
library, we distribute GPU rendering and vMF fitting on a cluster
of 30 Windows-based nodes: each one has an Intel Xeon 2.13GHz
CPU, 4GB RAM and dual GeForce GTX 580 graphics card. The
total computation time over the cluster is 8 days and 21 hours. The
size of one BVNDF is 1.2MB, and the total size of the BVNDF
library is 196.6GB.

As described in Sec. 4 & 5, we perform SVD followed by CX de-
composition to express materials / geometries in libraries as a linear
combination of representatives. The error threshold in CX decom-
position is 1.5%. The majority of time is spent on the SVD step.
For the material library, it takes 2.7 minutes on the in-core SVD.
For the geometry library, we first divide all geometry into 1,023
specular BVNDFs and 163,408 non-specular BVNDFs. It takes
23.0 hours to perform the random-projection-based SVD on non-
specular BVNDFs. Here the bottleneck is disk-memory data trans-
fer, due to the huge sizes of related matrices. Thus, we use a 512GB
Solid State Drive to accelerate the process. In the end, we obtain
156 representative BRDFs and 597 representative BVNDFs.

Inverse Computation. At the start of our system, the representa-
tive BRDFs and BVNDFs are loaded into memory to save time for
the inverse computation. In our experiments, we take 490 samples
when discretizing the target appearance f̂r , and retrieve 10 candi-
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Figure 11: Visually equivalent details. We can use our inverse solver to find a wide variety of different small-scale materials and geometries
(bottom two rows), which achieve similar large-scale appearance (top row). Each approximation result in the top row is computed by
combining the small-scale material and geometry shown in the same column. Here the target material is a Blinn-Phong BRDF (n = 60)
with a Lambertian lobe. Small-scale materials are color-shifted variants of (from left to right) Ward(α = 0.16) with a Lambertian lobe,
Ward(α = 0.05) with a Lambertian lobe, pickled-oak-260, gold-paint, Cook-Torrance(m = 0.19, F0 = 0.23) and blue-metallic-paint2.

dates as results. Running the material solver one time takes 0.8
seconds on average. For the geometry solver, the performance is
dependent on the number of BVNDF rotations. Typical timing re-
sults are 4.0 seconds for ψ = 1, and 18.8 seconds for ψ = 8. The
non-linear growth in time with respect to ψ is due to the better par-
allel utilization when ψ is big. For the general solver, the execution
time is 25.1 seconds, when 5 random initial starting points are used.
We observe in experiments that the general solver usually converges
after just two iterations.

User Interface. We render both the target appearance and our ap-
proximation in the inverse design system. Since the large-scale
appearance varies from diffuse one to high-specular material, we
importance sample the lighting directions, according to a sampled
version of the BRDF. To provide quick visual feedback, the render-
ing is done progressively and the result is accumulated in a buffer.
32 new light rays are shot each time the rendering updates, which
takes 0.2∼0.7 seconds.

Validation. To validate our inverse appearance solver, we gener-
ate large-scale appearance from small-scale BRDFs and geometry
that are already in our libraries, then test if the solver can compute
exactly the same results as input, or results that produce similar
large-scale looks. Since the number of different combinations of
materials and geometry in our libraries is huge, we randomly sam-
ple 10,000 of them as test cases. We perform three validation ex-
periments to test the geometry solver, the material solver and the
general solver (Tab. 1). The efficiency of a solver is measured by
7% relative error percentile, which is the percentage of results that
have no more than 7% of relative approximation error (the measure
of error divided by the measure of the target appearance, as defined
in Eq. 14). We choose the 7% relative error percentile here, be-
cause it is hard to notice the difference between the target and our
approximation, when the error is below this threshold, as shown in
Fig. 12. When testing the general solver, we use only 5 random
geometries / materials as starting points, and continue with the one
that has the minimum error.

Solver 7% Relative Exact
Error Percentile Recovery Rate

Geometry 98.94% 95.79%
Material 99.57% 96.98%
General 93.31% 19.77%

Table 1: Statistics from validation experiments.

Overall, we achieve more than 98% success rate (i.e., 7% relative
error percentile) for the geometry / material solver, and more than
93% for the general solver. Even for the exact recovery rate, we
are able to obtain more than 95% for the geometry / material solver.
Although the recovery rate for the general solver is about 20%, it
is not necessary to use exactly the original small-scale material and
geometry, for producing similar large-scale looks. Moreover, we
find that the general solver is very sensitive to the initial condition,
as it is essentially a local optimizer. Thus in practice, the designer
could impose additional constraints on the starting points to make
the solver more efficient, compared to doing random guesses.

9 Limitations and Future Work

Similar to other data-driven methods, one major limitation of our
framework is that the approximation quality of results from our
solvers, with respect to a given target large-scale material, is con-
strained by the diversity of the two precomputed libraries. This
problem can be alleviated by adding more versatile materials / ge-
ometries to our libraries. Another limitation is that currently we do
not support target large-scale appearance generated from spatially-
varying small-scale materials (e.g., the green-yellow grooves in
Fig. 9 of [Wu et al. 2011]). It will be interesting to quickly solve for
multiple small-scale materials, as well as their spatial distributions
over the small-scale geometry.

Due to performance concerns, our approach handles direct illu-
mination only, following the convention in bi-scale material de-



Figure 10: Adjusting the contrast of the target appearance (mea-
sured light-brown-fabric). Left: the target large-scale materials.
Center: our approximations. Right: the small-scale materials (from
top to bottom, polyurethane-foam and black-oxidized-steel) and ge-
ometry.

sign [Wu et al. 2011; Iwasaki et al. 2012] and fabrication [Weyrich
et al. 2009; Lan et al. 2013]. In certain cases with a material of
high albedo and a geometry of significant ambient occlusion on the
small-scale, this simplification may cause a darkening effect over
the large-scale appearance, compared to a more expensive Monte
Carlo path tracing result that includes indirect illumination. An
example is shown in Fig. 13. It will be a promising future direc-
tion to take into account interreflections, while maintaining near-
interactive feedback.

It will also be interesting to extend our framework to handle vol-
umetric scattering. In addition, we would like to include specific
manufacturing constraints in our system, and physically fabricate
the results from our inverse solvers.
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Figure 12: Results from validation experiments. Each approxima-
tion result has the maximum relative approximation error that is
less than 7% among all test cases. From left to right: results using
the geometry solver, the material solver and the general solver.

small-scale geometryours Monte Carlo results
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Figure 13: Darkened large-scale appearance, due to the direct-
illumination-only assumption. Here we compare three large-scale
BRDF slices, obtained by fixing ωi as the zenith. From left to right:
our result, full Monte Carlo path tracing result, Monte Carlo result
with indirect illumination only, and the small-scale geometry. The
small-scale material is a Cook-Torrance BRDF (m = 0.2). Our
result appears darker than the full simulation result, due to the lack
of indirect illumination.

References
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Appendix

We show in this section how to represent F as a 4D function. First, we perform a
change of parameters for f (Eq. 2)

f(n,ωi,ωo)

=f(R(n), R(ωi), R(ωo))

=f(R(n), (sin θh, 0, cos θh), (− sin θh, 0, cos θh))

,f ′(R(n), θh). (17)

Our parameters are similar to the ones in the half-angle parameterization [Rusinkiewicz
1998]. θh is half of the angle between ωi and ωo, defined as θh = 1

2 cos−1(ωi ·
ωo). R is a transformation, which rotates ωi to (sin θh, 0, cos θh), and ωo to
(− sin θh, 0, cos θh).

Substituting Eq. 4 and 17 into Eq. 1, we have

fr(ωi,ωo)

=

∫
S2
f
′
(R(n), θh)

∑
j

αjρ(n;κj ,µj)dn

=
∑
j

αj

(∫
S2
f
′
(R(n), θh)ρ(n;κj ,µj)dn

)

=
∑
j

αj

(∫
S2
f
′
(R(n), θh)ρ(R(n);κj , R(µj))dR(n)

)

=
∑
j

αj

(∫
S2
f
′
(n, θh)ρ(n;κj , R(µj))dn

)
=
∑
j

αjF (θh, κj , R(µj)),

where

F (θh, κ,µ) =

∫
S2
f
′
(n, θh)ρ(n;κ,µ)dn. (18)

Now F has only 4 dimensions, which is significantly lower than its original definition
in Eq. 7.
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