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Figure 1: Using a Kinect sensor, a mirror ball and printed markers (a), we estimate the appearance of an object from the
images captured by the Kinect infra-red camera (b) and the RGB camera (c). A rendered result using novel lighting and view
configurations is shown on the right (d).

Abstract
We present an interactive material acquisition system for average users to capture the spatially-varying appear-
ance of daily objects. While an object is being scanned, our system estimates its appearance on-the-fly and pro-
vides quick visual feedback. We build the system entirely on low-end, off-the-shelf components: a Kinect sensor,
a mirror ball and printed markers. We exploit the Kinect infra-red emitter/receiver, originally designed for depth
computation, as an active hand-held reflectometer, to segment the object into clusters of similar specular materials
and estimate the roughness parameters of BRDFs simultaneously. Next, the diffuse albedo and specular intensity
of the spatially-varying materials are rapidly computed in an inverse rendering framework, using data from the
Kinect RGB camera. We demonstrate captured results of a range of materials, and physically validate our system.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

With the prevalence of low-end geometry acquisition de-
vices, it is becoming increasingly easier for non-professional
users to digitize everyday objects. For example, using a
Kinect sensor, a user can quickly and intuitively create a ge-
ometric model of an object at home, by moving and pointing
the device towards the object from different points of view.
The real-time visualization of the result is provided to the
user on-the-fly, to help guide the scanning process.

However, no such average-user-friendly system exists to
acquire the material appearance of an object. One funda-
mental issue is the sheer complexity of the appearance: it
can be modeled as a 6D function, which varies in space,
and with lighting and view conditions. Traditional meth-
ods rely on expensive custom-built devices and/or profes-
sional expertise, to sample the 6D domain and measure
the appearance function [WLL∗09]. Recently, researchers
have proposed approaches for casual users to capture the
high-quality appearance, based on relatively simple set-
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ups [DWT∗10,RWS∗11]. But they are limited to planar sam-
ples, and require active lighting. Moreover, existing work
typically needs minutes or even hours of processing, be-
fore presenting the appearance results to the user. This is in
contrast to Kinect-based geometry scan with real-time feed-
back [IKH∗11], which greatly facilitates average users in the
acquisition process.

In this paper, we present AppFusion, a novel system for
non-professional users to capture the 6D appearance approx-
imation of an object with interactive visual feedback. Our
system is entirely built on low-end, off-the-shelf compo-
nents: a Kinect sensor, a mirror ball and printed paper mark-
ers. We present a unified acquisition framework, similar to
KinectFusion [IKH∗11]: the user simply moves the Kinect
sensor around the object; then our system quickly computes
the updated appearance and displays the result interactively.
In our experiments, it takes on average 10 minutes to scan the
geometry and the appearance of a variety of objects, ranging
from a pepper to an armchair.

AppFusion is a hybrid system that both uses active light-
ing in the infra-red (IR) spectrum, and processes passive
lighting in the visible spectrum. Specifically, we employ
the Kinect IR emitter/receiver, originally designed for depth
computation, as an active hand-held reflectometer. The re-
flected IR light is used to segment the object into clusters
of similar specular materials, and estimate the roughness pa-
rameters of BRDFs at the same time. We reduce the noise
in the IR spectrum by a process called BRDF fusion, which
integrates the received IR data over both the spatial and tem-
poral domain. Next, the diffuse albedo and specular intensity
of the spatially-varying materials are rapidly computed in
an inverse rendering framework, using data from the Kinect
RGB camera.

In summary, the major contributions of our paper are:

• We present an interactive appearance acquisition system
for casual users to digitize objects at home easily. The sys-
tem is built entirely on low-end, off-the-shelf components
and has the unique feature of displaying the captured ap-
pearance on-the-fly.
• We present a novel, hybrid form of appearance acquisi-

tion. The Kinect IR emitter/receiver, originally designed
for depth computation, are used as an active hand-held
reflectometer in the IR spectrum. We also handle passive
lighting in the visible spectrum.
• We essentially extend the idea of reflectance shar-

ing [ZREB06] to both the spatial and temporal domain,
using a process called BRDF fusion.

2. Related Work

In this section, we review previous work on estimating
(spatially-varying) BRDFs from measuring real-world ob-
jects. An excellent recent survey can be found in [WLL∗09].

Methods based on Professional Devices. SVBRDFs

(spatially-varying BRDFs) can be directly measured by
professional set-ups, such as spatial gonioreflectome-
ters [DvGNK99, Mca02], which densely sample the light-
ing and view directions, as well as the spatial domain. The
light stage [DHT∗00] installs a large number of directional
light sources, and rapidly changes their intensities in the
acquisition phase, for efficient capturing of the appearance
of human faces. Other dedicated devices are also proposed,
such as a rotating LED arm with five cameras [TFG∗13], to
acquire highly specular materials using spherical harmonic
illumination. Professional devices can measure SVBRDFs
with impressively high quality, but they are not targeted for
average users. It typically takes considerable amount of fi-
nancial budget, time and expertise to build, calibrate, and
use such systems for appearance acquisition.

Image-based Methods. These approaches mainly use
cameras to capture images for estimating SVBRDFs.
Marschner et al. [MWL∗99] acquires a 4D BRDF from
a convex object, using a camera and a light source.
Lensch et al. [LKG∗03] cluster and fit Lafortune models
to SVBRDFs over an object of known geometry, using a
sparse set of images taken with controlled lighting. Gard-
ner et al. [GTHD03] scan the SVBRDF of a planar sample,
with the help of a linear light source. Alldrin et al. [AZK08]
use a bivariate model for isotropic BRDFs, to recover the
SVBRDF and normals from images with varying illumina-
tion conditions. Recently, researchers propose novel appear-
ance acquisition methods, with a camera and an LCD moni-
tor as a programmable light source [GCP∗09, AWL13].

Another class of image-based methods do not perform ac-
tive lighting control. Romeiro et al. [RVZ08] also adopt the
bivariate model, and estimate a BRDF from a single image,
with captured environment lighting. Haber et al. [HFB∗09]
optimize both the lighting and SVBRDFs in an inverse
rendering framework, from photographs of an object with
no control over the lighting or the camera. The system
in [PCDS12] takes video frames and a known geometry as
input. It estimates environment lighting via points with spec-
ular reflections, and then optimize for the SVBRDFs. Li et
al. [LWS∗13] reconstruct a dynamic geometry from a multi-
view video, and optimize both the lighting and SVBRDFs.

While our approach can be viewed as an image-based
method, one key difference is that we provide interactive
feedback at the time of scanning, which is important for
average users. Previous work typically requires minutes or
even hours of processing, in addition to the acquisition time.
More time would be needed, if the user is not satisfied with
the result and has to restart the process again. Note that for
the application of mixed reality, Knecht et al. [KTTW12]
quickly estimate BRDFs using inverse rendering, for a fixed-
view depth map captured by a Kinect. Their system cannot
produce a complete 3D model for viewing at different an-
gles. In comparison, we resolve the lighting-material ambi-
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guity, by measuring from multi-views with active IR lighting
(Sec. 7).

Example-based Methods. Hertzmann and Seitz [HS03]
reconstruct normals and reflectance, by capturing the object
of interest alongside with a reference object of known ge-
ometry with similar materials. No geometric or radiomet-
ric calibration of the camera or the light source is needed,
while the presence of a reference object is required. Ma-
tusik et al. [MPBM03] analyze measured isotropic BRDFs,
and represent them using a linear combination of rep-
resentatives. The idea is applied to recover human skin
SVBRDFs in [WMP∗06]. Dong et al. [DWT∗10] develop
a specialized device for quickly capturing representative
BRDFs, and present a two-pass algorithm that captures an
SVBRDF as linear combinations of the representatives. Ren
et al. [RWS∗11] use a linear light source, and a BRDF chart,
which contains tiles of a variety of known BRDFs. They im-
age a planar sample along with the chart, and reconstruct the
SVBRDF by aligning the reflectance sequences of the object
and the chart, via dynamic time warping.

In comparison, our acquisition system is built with all off-
the-shelf components, which are easily accessible to casual
users. We do not require reference materials with known
BRDFs that are close to the appearance of interest. Only
standard white A4 paper is used for exposure calibration and
white balancing of the Kinect RGB camera (Sec. 4.2).

3. Preliminaries

We represent the material appearance as SVBRDFs, defined
over the surfaces of an object. The BRDF at a point, fr, is
modeled as a Lambertian term plus a specular BRDF term:

fr(ωi,ωo) =
ρd
π

+ρs f (α;ωi,ωo). (1)

Here ωi is the lighting direction; ωo is the view direction;
ρd /ρs are the diffuse albedo/specular intensity in RGB chan-
nels. f (α; ·) is a parametric specular BRDF, with α as its pa-
rameters. In this paper, we employ the Ward model [War92]
as f . Thus, α is the roughness parameter.

Similar to previous work (e.g., [LKG∗03, PCDS12]), we
model different ρd for each point on the geometry, and dif-
ferent ρs and α for a user-specified number of clusters, based
on the observation that common objects have slowly-varying
specular BRDFs in space [WLL∗09].

Next, the reflected radiance L at a point along a view di-
rection ωo is modeled according to [Kaj86]:

L(ωo) =
∫

Ω

Li(ωi) fr(ω′i ,ω
′
o)(n ·ωi)dωi, (2)

where Li describes the incoming light distribution; ω
′
i and ω

′
o

are the lighting and view directions, expressed in the local
frame at the point; Ω is the upper hemisphere, and n is the
surface normal. In the appearance acquisition context, we

measure L and Li, acquire the geometry of an object, and
then solve for fr using the above equation.

Assumptions. We omit indirect lighting and assume
isotropic fr in appearance computation based on Eq. (2),
which is common in previous material acquisition tech-
niques. Due to performance concerns, we do not compute
and process visibility information in our pipeline. We as-
sume that ω

′
i ≈ω

′
o in IR acquisition, as the baseline between

the IR emitter and receiver is small. Detailed justifications
are in Sec. 5.1.

We model the incident light as distant illumination,
recorded in an environment map. In addition, we assume that
for most parts of the object, the specular component is negli-
gible from at least one view in the acquisition (i.e., no bright
light subtending a large solid angle in the environment map).
Following [RWS∗11], we also assume that the scene can be
observed with sufficient dynamic range without clipping, by
setting an appropriate auto-exposure brightness on the RGB
camera.

Moreover, we assume that the roughness estimated from
the IR data is close to that of the visible spectrum. Note that
this assumption is reasonable for dielectrics. This is because
the specular reflectance is determined by the index of refrac-
tion [DRS07], and the index of refraction of measured di-
electrics varies little with respect to wavelength, in the range
of visible and IR spectrum. The assumption also works for
two types of glossy paint, which are non-dielectric materials
measured in Sec. 7.

4. Acquisition Pipeline

Our interactive appearance acquisition system consists of
three components: a Kinect sensor, a mirror sphere and
printed markers (Fig. 1). The markers are four white circles
over a black background, generated using a laser printer and
subsequently placed on a supporting plane.

We now briefly describe our acquisition pipeline (illus-
trated in Fig. 2). The first step is to capture the environ-
ment lighting. We scan the geometry of the mirror ball using
KinectFusion (Sec. 4.1), fit a sphere to the geometry, and
process the images taken by the RGB camera to generate an
environment map (Sec. 4.3). Next, the geometry of the object
of interest is also acquired via KinectFusion. We then seg-
ment the object into a manually-specified number of clusters
of different specular BRDFs, and compute the correspond-
ing roughness parameter α, based on the IR signals reflected
off the object (Sec. 5.1 and 5.2). After that, we rapidly opti-
mize for spatially-varying ρd and ρs in an inverse rendering
framework, using data from the RGB camera (Sec. 5.3). Fi-
nally, post-processing (Sec. 6) is performed to produce the
output of our system: a triangular mesh representing the ge-
ometry, along with a few texture maps storing ρd , ρs and α.

Note that except for post-processing, all computation is
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Figure 2: Our system pipeline: given an object, we first scan its geometry via KinectFusion; next, we segment the object into
clusters of similar specular BRDFs, and estimate the roughness of the BRDF in each cluster, using the Kinect as an active IR
reflectometer; with a previously captured environment map, we compute ρd and ρs in an inverse rendering framework; after
that, we obtain both the appearance and geometry as the final result.

done on-the-fly to give prompt visual feedback through-
out the scanning process. Please refer to the accompanying
video for a live demo of our system.

4.1. Geometry Acquisition

The geometry of an object can be directly acquired using
KinectFusion. Foreground / background geometry separa-
tion is achieved with the help of the white circles placed
around the object of interest: we use the four circles to define
a virtual box with a pre-defined size on top of the support-
ing plane; anything outside of the box is considered part of
the background. After the separation, we discretize the sur-
faces of the object mesh, by randomly sampling points with
a probability proportional to the surface area. These points
{pi} are then stored in a spatial grid based on their positions,
for fast point-wise nearest neighbor query in later appear-
ance acquisition stage (Sec. 5). In addition, we apply bilat-
eral filtering [FDCO03] to smooth the noisy normals directly
obtained from KinectFusion, denoted as {ni}.

4.2. RGB Data Pre-processing

We use the Kinect SDK API to get image data in the lin-
ear space, and thus do not explicitly calibrate the response
curves of the RGB camera. For each RGB image frame, we
pre-process the data to compensate for potential color shift
and time-varying exposures, based on the markers (similar
to previous work like [RWS∗11]). Specifically, we first map
the calibrated positions of white circles from the 3D space
to the image. If one or more centers are found in the im-
age, the corresponding pixels are averaged to obtain a refer-
ence white pixel. We then divide every pixel in the image by

the reference white pixel on a per-channel basis. The radio-
metrically calibrated result is sent to our system for further
processing. An appropriate auto-exposure brightness is set
manually for the RGB camera to avoid saturations.

4.3. Lighting Acquisition

We acquire the environment lighting from the mirror ball,
for inverse rendering in the appearance acquisition stage
(Sec. 5). The first step is to scan the geometry of the ball
using KinectFusion. However, the resulting geometry is typ-
ically noisy, due to the highly-specular nature of the ball
material: the reflected IR light is weak at most parts of the
ball where there is no mirror reflection; therefore, the cor-
responding depth estimate is less accurate, when compared
to a material with a non-negligible Lambertian component.
To alleviate this problem, we exploit the prior information
that the object is a ball, and fit a perfect sphere to the cap-
tured geometry using least squares, right after the automatic
object/background geometry separation. Next, image frames
obtained from the RGB camera are mapped onto the sphere;
for each pixel, we find the reflection direction with respect
to the current view direction, and update the corresponding
texel in the environment map. In each update, we calculate
the weighted average of existing texel values and the new
pixel sample. Following [LKG∗03], the weight of a sample
is computed as ωo · n, which penalizes grazing views. The
final lighting results are mapped onto squares via [PH03].

According to Sec. 4.2, the environment lighting we cap-
ture is radiometrically calibrated. Note that possible lighting
occlusion by the user in acquisition is alleviated, by using
the multi-view weighted average for computing texels in the
environment map. One additional benefit of using the mark-
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ers is that it implicitly aligns the environment map with the
object of interest, if both geometries are transformed to the
local coordinate system defined by markers. Moreover, we
can capture the environment lighting only once, and share it
for subsequent appearance scanning based on the same set
of markers.

5. Appearance Acquisition

From previous stages, we have already obtained the lighting,
and the geometry discretized as points {pi} and correspond-
ing normals {ni}. In this stage, we first group points into a
user-specified number of clusters depending on the specu-
lar BRDF f , and compute the roughness α for each cluster,
using the Kinect IR emitter and receiver as an active reflec-
tometer. Next, we switch to the RGB camera and perform
inverse rendering, to compute per-point ρd and per-cluster
ρs. It is worth mentioning that Kinect IR images have been
used for geometry refinement in [CPTK14].

5.1. BRDF Fusion

Before describing details about BRDF clustering, we intro-
duce the idea of BRDF fusion, which is used to compute the
roughness parameter α, given a cluster of points that share
the same specular BRDF f . We apply Eq. 2 to the IR spec-
trum, which requires known L and Li. L can be directly mea-
sured using the depth camera. But Li, the IR light emitted by
the Kinect and originally designed for depth estimation only,
varies considerably in space [KE12]. The high-frequency na-
ture makes it challenging and demanding, for average users
to recover the exact spatial intensity distribution of the IR
light. Instead, we model Li as a noisy source, and average
reflected IR light, when determining the BRDF parameter.
The exact value of Li is not needed, as only the roughness
α is computed. The high-level idea is similar to KinectFu-
sion [IKH∗11], where individual noisy depth maps are inte-
grated to produce results with less noise.

Specifically, for each pixel in an image frame captured by
the depth camera, we register it to the geometry, by finding
the nearest neighbor pi in the spatial grid structure we built
in the geometry acquisition stage (Sec. 4.1), with respect to
the corresponding 3D location of the pixel. Then, the light-
ing and view directions, estimated from the KinectFusion
camera position, are transformed into the local frame at pi.
If either ω

′
i or ω

′
o is close to the grazing angle, we discard the

pixel, as the measurements are unreliable. Otherwise, the lo-
cal ω

′
i , ω
′
o along with the IR pixel value are stored in a data

structure for further processing. Fig. 3 illustrates the case.

For the data structure that integrates IR samples, we ex-
pect that it should take all samples into consideration for ef-
ficient noise reduction, and at the same time consume mod-
erate memory footprint. To meet these requirements, We
propose a Half-angle BRDF Sample Accumulation Buffer
(HBSAB), essentially representing a discretized version of

p1

p2n1

n2

o,2

o,1

i,2

i,1

IR Emitter

IR Receiver

Figure 3: The Kinect as an active reflectometer in the IR
spectrum. Light from the IR emitter may hit a surface point,
and get reflected to the IR receiver.

a BRDF. An HBSAB stores an average IR value v and a
weight w for each discretized half vector, parameterized over
a square according to [PH03]. Suppose that we receive a
new IR pixel valued v̂, with a weight ŵ of ωo · n (similar to
Sec. 4.3). To update the buffer, we compute the half vector
between the local ω

′
i and ω

′
o, locate the corresponding entry

in the buffer, and update it as:

vnew =
v ·w+ v̂ · ŵ

w+ ŵ
, wnew = w+ ŵ. (3)

The final step is to compute the roughness α from the ac-
cumulation buffer: for each entry with its weight exceed-
ing a threshold, we treat it as a BRDF sample by setting
both ω

′
i and ω

′
o to their half vector, and the BRDF value

to v; then we separate the specular reflectance from the dif-
fuse reflectance, which is computed as the minimum over
all measured reflectance samples; Ward BRDFs are finally
fitted to the specular reflectance using non-linear optimiza-
tions [NDM05]. As the user scans the object, we update the
HBSAB and perform BRDF fitting from time to time. Please
refer to Fig. 4 for HBSAB examples and the influence of in-
creasing number of IR samples.

1023

0
a b c

Figure 4: The IR noise is considerably reduced with increas-
ing number of IR samples. Average IR values in HBSABs of
10K (a) and 100K samples (b) are visualized. A specular
BRDF fitting result on (b) is shown in (c). Here we param-
eterize HBSABs and the BRDF fitting result over a square
according to [PH03].

We now justify the implicit assumption in the aforemen-
tioned HBSAB processing, that both ω

′
i and ω

′
o are equal

to their half vector. In fact, ω
′
i and ω

′
o are close, when cap-

turing with the Kinect sensor. Consider that the IR emitter
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and receiver are approximately 7.5cm apart on the sensor,
and the minimum view distance between the Kinect sensor
and an object is 40cm. Then, the maximum angle between
ω
′
i and ω

′
o is 2× arctan(0.5× 7.5

40 ) = 10.7◦. The angle de-
creases to 7.2/5.4◦ at more typical 60/80cm view distances.
Moreover, we conduct simulation experiments, using syn-
thetic Ward models (α ranging from 0.05 to 0.75). Assum-
ing a 40cm view distance, we randomly generate ω

′
i and ω

′
o,

sample the BRDF at these directional pairs, and update the
HBSABs. Next, we compare the α computed from BRDF
fitting with the ground truth. For all experiments, the maxi-
mum relative error is 0.26%, which is sufficiently small for
our applications.

Note that 1D buffers can be used in place of 2D HBSABs
for isotropic BRDFs. We employ the 2D buffers, as they are
efficiently processed by our system already, and can directly
handle anisotropic BRDFs in a future extension.

5.2. BRDF Clustering

In this subsection, we describe how to partition the object
into a user-specified number of clusters while scanning, as
well as a subsequent manual refinement process. First of all,
we would like to exploit the reflected IR data, which essen-
tially represents partial SV-BRDFs over the object, to facili-
tate clustering. However, the IR data reflected from one point
pi is usually noisy (Sec. 5.1), which is not reliable for clus-
tering directly. Inspired by reflectance sharing [ZREB06],
we could aggregate the IR data from all points of the same
specular material, to obtain a result with less noise. How-
ever, determining points of the same specular BRDF is our
problem in the first place.

To tackle this challenge, we employ a data structure called
BRDF cut, originally introduced by [CPWAP08]. Our key
idea to decouple the determination of points with reliable IR
measurements and specular BRDF similarities, into two sep-
arate processes: we first use a BRDF cut to identify groups of
points with reliable IR measurements, then perform cluster-
ing over these groups to find points that have similar specular
BRDFs. Specifically, we build a binary tree that partitions all
points {pi} of an object, based on the vector concatenating
a position and its normal: we start with all {pi}, recursively
divide them into smaller sets, until a minimum number of
points in a set is reached. Please see Fig. 5 for an example.
In this tree, every node represents a subset of points {pi},
and every cut corresponds to a partition of all points. In ad-
dition, an HBSAB is stored in each node.

When new IR data at a point pi is received, we look up
its corresponding leaf node in the tree, and update the HB-
SAB using BRDF fusion. To determine whether the points in
a node have reliable IR measurements, we weighted-average
the HBSABs of its children, and test if there are enough sam-
ples and a sufficient coverage in a potential highlight region,
based on a synthetic BRDF of a broad highlight. Note that
this test is similar to [LKG∗03].

HBSAB

BRDF Cut

a

b

c

Figure 5: A BRDF cut example. By averaging the HBSABs
at leaf nodes (b & c), the computed HBSAB at the cut node
(a) is more reliable than that of any of its leaf node.

BRDF clustering is performed based on nodes in the cut.
Initially, the cut contains the root only. It is then updated
as we traverse its nodes: whenever a node has at least one
child with reliable measurements, we delete the node from
the cut, and insert its two children instead. Next, we per-
form k-means clustering, using HBSABs of the nodes in the
cut with reliable measurements. For the remaining unreli-
able cut nodes, we assign them to one of the cluster centers
based on the L2 distance between corresponding HBSABs,
after subtracting the diffuse components. As more IR data is
received, the cut / clusters are gradually refined in space. In
our user interface, we visualize the clustering by rendering
the points of each cluster with a different color. In the end,
we obtain both the clustering of specular materials, and the
corresponding BRDF roughness parameters by fitting aggre-
gated HBSABs, in a unified process.

It is worth mentioning that although the concept of a gen-
eral 4D BRDF cut was first introduced in [CPWAP08], it
was not implemented due to the prohibitive size. In compar-
ison, our 2D HBSAB-based BRDF cut requires much less
memory footprint and can be efficiently implemented.

Manual Clustering Refinement. Even though our
BRDF-cut-based method can quickly cluster specular
BRDFs, there might be small regions on the object assigned
to wrong clusters, mainly due to unreliable IR measurements
(e.g., parts with significant occlusions). We provide a simple,
optional 3D painting interface to fix this issue. The user can
easily and quickly paint correct cluster assignments to parts
of the 3D object, using a brush with an adjustable size.

5.3. Computation of ρd and ρs

We use the image frames captured by the RGB camera
to compute ρd and ρs in the visible spectrum. Similar to
Sec. 5.1, for each calibrated pixel L in an image frame, we
register it to the nearest point pi. Next, the view direction ωo
estimated from the KinectFusion camera position, is trans-
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formed into the local frame, denoted as ω
′
o. L and ω

′
o are

then buffered for subsequent processing.

To rapidly compute ρd and ρs for prompt visual feed-
back, we use an inverse rendering framework based on pre-
computed double-product wavelet integrals [NRH03], sim-
ilar to [HFB∗09]. We first derive the related formulation.
Substituting Eq. 1 into Eq. 2, we have:

L(ωo) =
∫

Ω

Li(ωi)(
ρd
π

+ρs f (α;ω
′
i ,ω
′
o))(n ·ωi)dωi,

=ρd

∫
1
π

Li(ωi)(n ·ωi)dωi+

ρs

∫
Li(ωi) f (α;ω

′
i ,ω
′
o))(n ·ωi)dωi. (4)

For efficient evaluation of Eq. 4, we precompute the first in-
tegral as D(n) =

∫ 1
π

Li(ωi)(n ·ωi)dωi, for different n sam-
pled from the unit sphere. The second integral in the equa-
tion can be viewed as a convolution of two hemispherical
functions, the local lighting L̃(n;ω

′
i) = Li(ωi)(n ·ωi), and

the BRDF slice f̃ (α,ω′o;ω
′
i) = f (α;ω

′
i ,ω
′
o), where the vari-

able is ω
′
i . By expressing both functions using Haar wavelet

basis, this integral can be quickly computed as a dot prod-
uct [NRH03]. In practice, we precompute the wavelet trans-
forms for f̃ (α,ω′o; ·) with respect to a variety of α and dis-
cretized ω

′
o. For L̃(n; ·), we compute its Haar wavelet coef-

ficients after the lighting acquisition, essentially pre-rotating
the environment map.

Now we can express Eq. 4 as a linear equation:

L = Dρd +Sρs, (5)

where L is the calibrated RGB pixel value, and S is the
double-product term.

Following previous work such as [WZT∗08], we compute
ρd,i, the diffuse albedo at pi, as:

ρd,i = min
j

Li, j

Di, j
, (6)

where Li, j is the j-th RGB sample reflected from pi, Di, j is
the corresponding diffuse term. In practice, we maintain a
histogram at each point pi, and typically use the 10th per-
centile, rather than the minimum among all Li, j

Di, j
, as ρd,i. In

our experiments, this approach is more robust against errors
like mis-registrations.

Once ρd,i is computed for all points of the object, we fix
them and derive the following equation for ρs from Eq. 5:

Si, jρs = Li, j−Di, jρd,i. (7)

Here pi is a point that belongs to the current cluster of spec-
ular material, and Si, j is the corresponding double-product
terms. Since the only unknown factor is ρs, we compute it as
the analytical least squares solution to Eq. 7:

ρs =
∑Si, j(Li, j−Di, jρd,i)

∑Si, jSi, j
. (8)

In our implementation, we only store the nominator and the
denominator on the right hand side of the equation, and up-
date them as new RGB samples arrive. There is no need to
store individual Li, j, Si, j or Di, j. Essentially, we use very
small constant-sized memory to solve a global optimization,
taking into account all samples.

6. Additional Details

Calibrations. We estimate the IR background noise by
switching off the IR emitter, capturing and averaging a num-
ber of IR frames, and finding in a histogram the bin with
most pixels as the noise level.

We calibrate the IR/depth camera response curve by view-
ing a sheet of white paper from different distances. Assum-
ing that the IR light intensity distribution is spatially and
temporally stationary, we compute both unknown IR inten-
sity distribution, modeled as a shifted Γ distribution, and the
response curve, using the reflected IR light from the paper
at different distances via a brute-force optimization. Our es-
timated γ is 0.9. The computed probability density function

for IR intensity x is f (x) = tk−1e−
t
θ

θkΓ(k) , where k = 1.6, θ = 2.8

and t =−3.4+57.7d2x. Note that d is the view distance.

Post-processing. Once the acquisition using the Kinect
is finished, we perform post-processing to generate the fi-
nal result. A new mesh is created by the ball-pivoting algo-
rithm [BMR∗99] from the discretized points of the object.
We then clean holes in the mesh, create a uv parameteriza-
tion, and export textures representing ρd , ρs and α.

7. Results and Discussions

We capture the appearance of objects, using the IR and the
RGB cameras, both at a resolution of 640×480 with a rate of
30 frames per second. We set up different platforms for scan-
ning objects of different sizes. For small objects, we place
the white circle markers on top of a cabinet, which serves as
the supporting plane. We also cover the rest surface area with
printed black paper, to reduce potential interreflections be-
tween the top of the cabinet and the object. For large objects,
we directly place on the floor four sheets of paper, each one
with a white circle in the center and a black background. We
conduct our acquisition experiments in a small office with
four area light sources on the ceiling, which is visualized in
Fig. 2. In the geometry acquisition stage, we randomly sam-
ple 100K points over the surfaces of the mesh obtained from
KinectFusion. We represent the environment light at a res-
olution of 2× 1282. The prerotated environment maps, ex-
pressed in Haar wavelets, occupies 145MB. A BRDF slice of
fixed ωo is represented at a resolution of 1282. We precom-
pute the wavelet transforms of 500 Ward BRDFs of varying
roughness parameters. The size of the results is 9.1GB.

We demonstrate in Fig. 6 the appearance acquisition re-
sults on five objects with a range of different materials,

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



H. Wu & K. Zhou / AppFusion

�1=0.06

�2=0.13

�1=0.08

�1=0.14

�1=0.08

�2=0.21

�1=0.09

�2=0.18

Figure 6: Comparisons between our results and images captured from the RGB camera (left), and rendering results under novel
lighting and view conditions (right). From the left column to right, calibrated RGB images, our rendered results, rendering
using diffuse components, rendering using specular components, rendering using a Lambertian model with ρd +ρs as albedos,
estimated roughness parameters, novel rendering results (we change the hue of one red pepper to green).

an armchair made of leather and lacquered wood, a plas-
tic trashbin, a ceramic pot, an eggplant and a pepper. Here
visual comparisons are shown, between the calibrated im-
age from the RGB camera and the rendering result using
our estimated appearance. Our results qualitatively match
the corresponding images, and can be used to generate real-
istic rendering of the objects under novel lighting and view
conditions. Please also refer to the accompanying video for
animated rendering results.

We further test our system on a more challenging object,
which varies continuously in specular roughness, as shown
in Fig. 7. A silver metallic paint, composed of tiny metallic
flakes, is manually sprayed on a plaster ball (Fig. 7-a). We
spray the paint mainly towards one region as indicated by the
white arrow in Fig. 7-d, in order to create a varying density
of metallic flakes, which result in changing specular rough-
ness, that increases from that region to distant ones. Our re-
construction result (Fig. 7-b & e) roughly approximates the
original appearance, using four clusters of specular materi-

als with no manual refinement (Fig. 7-d). The estimated α

are 0.11 / 0.12 / 0.14 / 0.22 for the cluster visualized in red
/ green / blue / yellow, respectively. Overall, the clustering
result is in accordance with the spray paint density over the
ball. In comparison, a reconstruction result using a single
specular material (Fig. 7-c & f) approximates the original
appearance poorly. For example, in Fig. 7-a, the highlight on
the top part of the ball is blurred out due to a large specular
roughness; but a narrower and brighter highlight appears in
the same region in Fig. 7-c. Note that due to the IR measure-
ment noise (Sec. 5.1 & 5.2), we cannot use more clusters or
obtain a more spatially-refined clustering of materials, which
limits the quality of the result.

We would like to emphasize that our results are not high-
precision SVBRDF measurements. Instead, the focus of our
work is to allow average users to intuitively and quickly
model an approximation to the appearance of an object,
which can later be used for realistic rendering/editing, solely
using low-end, off-the-shelf components.
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Figure 7: Capturing a ball that varies in specular rough-
ness: a photograph of the ball (a); our reconstruction (b)
and estimated specular components (e), using four specular
clusters with no manual refinement, which are visualized in
(d) with cluster-color-coded roughness α listed on the left;
a reconstruction using one specular cluster only (c) and the
corresponding specular component (f). Note the appearance
differences in red dashed rectangles in (a, b & c).

Validation on Planar Samples. We physically validate
our approach on three different planar material samples: dif-
fuse blue paper, glossy gold paint and mirror-like red metal-
lic foil (Fig. 8). Their appearance is first captured using a
small light stage, with 80 lighting directions by 7 view di-
rections. Then, the acquired ground-truth BRDFs are fitted
using Ward models, and compared with results from our sys-
tem in Fig. 8. For the diffuse paper and the glossy paint,
our results approximate the ground-truth BRDFs reasonably
well in terms of visual perception and the roughness α. How-
ever, for the mirror-like foil, our estimate of α is consider-
ably larger than the ground-truth. The main reason is that,
using KinectFusion we cannot estimate the camera position
and orientation with sufficient precision for capturing highly
specular materials.

Error Analysis on IR Roughness Computation. A num-
ber of factors could affect the roughness computed from IR
measurements. We would like to identify the major source
of error and suggest possible improvements. To do so, a se-
ries of experiments are conducted on a glossy ball, whose
ground-truth roughness (αtruth = 0.20) is computed via an
image-based approach [MWL∗99], using an LED point light
source and a Canon EOS 50D DSLR (Fig. 9-a).

First, using our system we obtain a roughness of αours =
0.24 (Fig. 9-b), which is larger than αtruth. Note that αours is
smaller than αsingle = 0.28, which is obtained from a sin-
gle IR image by applying [MWL∗99]. To investigate the
impact of inaccurate geometry / normals, we fit a perfect
sphere to the scanned geometry (similar to Sec. 4.3), and
get α f it = 0.24. So the measured geometry / normal is
not the main error source. Finally, we cover the IR emitter

Ground-truth Our ResultsPhoto HBSABs

α=0.47                α=0.46

α=0.15                α=0.16

α=0.01                α=0.08

Figure 8: Validation experiments. From left to right: a pho-
tograph of three planar material samples; BRDFs fitted us-
ing measurements from a light stage, rendered with a direc-
tional light; our results; corresponding HBSABs.

with a thin layer of paper, to make the IR light distribution
close to being uniform (Fig. 9-c). Since the depth compu-
tation in Kinect does not work in this case, we again em-
ploy [MWL∗99] to estimate the roughness αuni f orm = 0.20,
which is equal to αtruth. This suggests that the major source
of error in IR roughness computation is the large spatial vari-
ation in the IR light source. The accuracy of our system on
general objects is expected to improve, using future devices
that emit more uniform light, such as the Kinect v2.

a b c

Figure 9: Computing the IR roughness by different meth-
ods: using [MWL∗99] from an HDR image (a) captured by
a DSLR; using our system based on IR measurements (b);
using [MWL∗99] from a single IR image (c), while covering
the IR emitter with paper. All images are shown in green for
a better visualization.

Performance. We implement our system and measure its
performance on a PC, with a quad-core Intel i7 3770K and
32GB of memory. While the user is scanning the object, our
system provides interactive visual feedback, at 7∼16 frames
per second. In our experiments, acquiring one novel envi-
ronment lighting takes 3∼5 minutes. A detailed breakdown
of the timing results for appearance acquisition can be found
in Tab. 1. On average, it takes 10 minutes for a user to scan
the geometry and the appearance of an object. The majority
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of time is spent on the geometry acquisition via KinectFu-
sion and capturing ρd , in order to get a good coverage of
view points, which is important for rendering/relighting of
the object.

Geo. Clus. Ref. ρd ρs Total
Acq. & Fus.

Armchair 4.2 3.2 1.1 3.7 2.0 14.2
Trashbin 3.9 0.9 0.0 3.6 2.0 10.4

Pot 2.2 0.6 0.0 5.1 1.3 9.2
Eggplant 1.6 1.1 0.6 3.0 1.7 8.0
Pepper 1.9 1.2 0.5 3.8 2.0 9.4

Table 1: Appearance acquisition timing results (in minutes)
using our system. From left to right, geometry acquisition,
BRDF clustering and fusion, manual clustering refinement,
scanning and computing ρd /ρs, and the total time.

Limitations. The quality of our results is negatively af-
fected, if the assumptions introduced in Sec. 3 are not satis-
fied. For example, interreflections could be incorrectly com-
puted as part of the diffuse albedo ρd . Moreover, ignoring
the visibility factor makes our approach less accurate for ob-
jects with significant occlusions. One possible way to allevi-
ate this problem, is to record all input data from the Kinect
sensor throughout a scan. In a subsequent post-processing
step, one can compute a more accurate result, by calculating
visibility functions of all points over the geometry.

Our acquisition quality is also limited by the Kinect sen-
sor, including inaccurate camera position/orientation esti-
mate and the highly noisy IR light source. It would be in-
teresting to develop new devices or tailor existing ones to
improve on these aspects.

8. Conclusions and Future Work

We present AppFusion, an interactive appearance acquisi-
tion system for casual users, which is built entirely on low-
end, off-the-shelf components and has the unique feature of
displaying captured results on-the-fly. We test our system by
acquiring the appearance of a range of objects with various
materials. Our work is a first step towards interactive, real-
istic appearance acquisition for home users. We hope that
more work will be stimulated, to make high-quality appear-
ance acquisition as easy as using KinectFusion for scanning
geometry today, using tens of millions of Kinect sensors that
have already been shipped.

For future work, we would like to address the limita-
tions of our system, as mentioned in Sec. 7. In addition,
due to the device limitation [Mic13], we are unable to access
data simultaneously from the Kinect RGB and IR cameras.
We hope that future hardware/SDK design could implement
such a functionality, so that BRDF clustering and fusion and
the computation of ρd can be performed in one pass to fur-
ther reduce the acquisition time.
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