
A Data-driven Approach to Four-view Image-based Hair Modeling

MENG ZHANG, MENGLEI CHAI, HONGZHI WU, HAO YANG, and KUN ZHOU,
State Key Lab of CAD&CG, Zhejiang University

Fig. 1. Given four input hair images taken from the front, back, left and right views, our method computes a complete strand-level 3D hair model that closely
resembles the hair in all images.

We introduce a novel four-view image-based hair modeling method. Given
four hair images taken from the front, back, left and right views as input,
we first estimate the rough 3D shape of the hair observed in the input using
a predefined database of 3D hair models, then synthesize a hair texture on
the surface of the shape, from which the hair growing direction information
is calculated and used to construct a 3D direction field in the hair volume.
Finally, we grow hair strands from the scalp, following the direction field,
to produce the 3D hair model, which closely resembles the hair in all input
images. Our method does not require that all input images are from the same
hair, enabling an effective way to create compelling hair models from images
of considerably different hairstyles at different views. We demonstrate the
efficacy of our method using a wide range of examples.

CCS Concepts: • Computing methodologies→ Shape modeling;

Additional Key Words and Phrases: hair modeling, image-based modeling,
patch-based texture synthesis

ACM Reference format:
Meng Zhang, Menglei Chai, Hongzhi Wu, Hao Yang, and Kun Zhou. 2017.
A Data-driven Approach to Four-view Image-based Hair Modeling. ACM
Trans. Graph. 36, 4, Article 156 (July 2017), 11 pages.
DOI: http://dx.doi.org/10.1145/3072959.3073627

1 INTRODUCTION
Hair plays a crucial role in producing realistically looking characters
in computer-generated imagery. The generation of compelling 3D
hairs, however, requires considerable efforts, due to the intricate hair
structures and the wide variety of real-world hairstyles. It usually
takes a few days of manual work by digital artists to create realistic
3D hair models in the entertainment industry, using dedicated hair
design tools.

This work is supported by the National Science Foundation China (U1609215), the
National Program for Special Support of Eminent Professionals of China, and the Funda-
mental Research Funds for the Central Universities (2017XZZX009-03). Corresponding
authors: Hongzhi Wu (hongzhi.wu@gmail.com), Kun Zhou (kunzhou@acm.org).
© 2017 ACM. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in ACM
Transactions on Graphics, https://doi.org/http://dx.doi.org/10.1145/3072959.3073627.

Recently, significant research effort has been devoted to hair
digitalization, to help reduce the laborious work in the hair modeling
process. Multi-view hair modeling [Hu et al. 2014; Luo et al. 2013;
Paris et al. 2008] can generate impressive reconstructions of chal-
lenging, real-world hairstyles from dozens of images under different
views, usually captured in a controlled environment. They often
require complex acquisition setups, which are not easily accessible
to average users. On the other hand, single-view hair modeling
approaches [Chai et al. 2016, 2012; Hu et al. 2015] only take a single
hair image as input, and produce plausible 3D hair models by using
various forms of priors. As there is no input information about the
hair at other views, the modeling result may not match the reality at
views distant from the input one. Yu et al. [2014] propose a hybrid
image-CAD system to create a 3D hair model from two or three
images. Their focus is on visually pleasing results, not close visual
matches to the input images.
In this paper, we introduce a novel four-view image-based hair

modeling method, to fill in the gap between existing work on multi-
view and single-view hair modeling. Given four images taken from
the front, back, left and right views as input, our pipeline generates
a complete strand-level 3D hair model that closely resembles the
hair in all input images, with the help of a small amount of user
interaction. We start by estimating the rough 3D shape of the hair
observed in the input images, then synthesize a hair texture on
the surface of the shape, from which the hair growing direction
information on the hair shape surface is calculated and diffused to
construct a 3D direction field in the hair volume. Finally, we grow
hair strands from the scalp, following the direction field, to produce
the 3D hair model.

In designing the above pipeline, we must address one challenging
issue – how to generate a 3D hair model that matches all four
input views with high fidelity. Unlike previous multi-view modeling
methods which calculate accurate correspondences between a set
of densely captured images, we cannot get reliable correspondences
from the sparse set of four images. Simply projecting each image
onto the hair shape according to its camera specification and linearly

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

156:2 • M. Zhang et. al.

blending in overlapping regions would blur out hair details and
might leave holes due to insufficient coverage of the input images.
To this end, we propose a novel hair texture synthesis algorithm
to effectively combine images from different views to generate
a consistent hair texture over the hair surface. Our algorithm is
inspired by Image Melding [Darabi et al. 2012], an effective algo-
rithm for combining independent images via patch-based texture
synthesis. We generalize the original 2D-image-based algorithm to
perform synthesis on a 3D surface from source images with spatial
relationships. 3D hair strands are then grown with the help of this
hair texture.
One major benefit of our method is that it does not require that

all input images are from the same hair, thanks to our multi-source
hair texture synthesis algorithm. This is particularly useful when
only a single-view image of the hair is available. We can search over
the Internet for plausible and similar hair images at other views,
which lowers the requirement for applying our method to create
compelling hair models. Furthermore, we could generate interesting
hairstyles, by feeding in images of considerably different hairstyles
at different views. We demonstrate the efficacy of our method with
a wide range of examples.

2 RELATED WORK
Human hair modeling is an extensively studied topic in computer
graphics, due to its importance in a variety of applications, as well
as its inherent difficulties. Please refer to [Ward et al. 2007] for a
comprehensive survey. Here, we limit our discussion to a small
number of representative methods mostly related to our work.

2.1 Geometry-based Hair Modeling
Related papers (e.g., [Kim and Neumann 2002; Yuksel et al. 2009])
introduce design tools to directly create and edit the hair geometry.
Wang et al. [2009] propose a hair geometry synthesis approach to
hair modeling. Given an input 3D hair model, they can create a
novel one with a statistically similar spatial arrangement of hair
strands and geometric details. A key component of our method is
a hair texture synthesis algorithm that generates a consistent hair
texture over the surface of the hair shape from four input images.

2.2 Multi-view Hair Modeling
This category of methods creates high-quality 3D hair models from
images taken from a large number of different views. They often
require complex acquisition setups, such as a number of cameras as
well as related controllers. Wei et al. [2005] take as input about 40
images of the same hair, and calculate correspondences among all
input images to estimate hair orientations. Paris et al. [2004] recover
3D fiber orientations for hair reconstruction by analyzing image
sequences with difference lighting conditions, taken from four views.
Paris et al. [2008] propose an active hair capturing system, which can
acquire the positions of exterior hair strands with high precisions.
Jakob et al. [2009] capture detailed arrangement of fibers in a hair
assembly by growing the strandswithin the diffused orientation field
from the scalp to the exterior hair layer. In [Luo et al. 2013], coherent
and plausible structure-aware wisps are reconstructed from multi-
view images, which are used to robustly synthesize hair strands.

Herrera et al. [2012] use thermal imaging to generate strands by
growing from the boundary of the captured hair. Recently, Hu et
al. [2014] propose a strand fitting algorithm to find structurally
plausible configurations among the locally grown hair segments
using a database of simulated examples. Cao et al. [2016] constructs
a coarse geometric proxy as a morphable hair model from 32 images
for a user. All these multi-view modeling methods require densely
captured images to calculate dense correspondences between images
and solve for the hair geometry. We tackle the unique challenge of
unreliable correspondences among a sparse number of views using
a hair texture synthesis approach.

Yu et al. [2014] propose a hybrid image-CAD system to create and
edit hair models from two or three images. In a concurrent work,
Vanakittistien et al. [2016] introduce a lightweight system, which
takes as input 8 photos and generates a 3D hair model via guide
strand tracing on a 3D orientation field computed from multi-view
photos using [Wei et al. 2005]. Here one key difference is that these
methods model 3D hair that is visually pleasing but not necessarily
faithful to input in details, while our results visually resemble all
input images captured at different views. Moreover, in our system,
an average user can easily create novel hairstyles by combining
different hair images from different subjects. It is not known how
to efficiently perform the same task in [Vanakittistien et al. 2016;
Yu et al. 2014].

2.3 Single-view Hair Modeling
Considerable progress has been made to the development of single-
image-based hair modeling techniques. Chai et al. [2012] introduce
an effective high-precision 2D strand tracing algorithm, which is
used to further create 3D strands that match inter-strand occlusions.
The system is extended to handle single video input in [Chai et al.
2013]. Hu et al. [2015] first retrieve a 3Dmodel from a large database,
and then perform joint optimization on strands taking into account
2D similarity, physical plausibility and orientation coherence. Chai
et al. [2015] exploit shading cues in the input image to produce
high-quality results. More recently, a fully automatic single-view
hair modeling pipeline is proposed in [Chai et al. 2016], which uses
deep neural networks to estimate the hair region and hair growing
directions. However, it is not clear how to extend their paper to
our multi-view case. Due to the potentially complex interactions
between hair and body (e.g., Fig. 1), it is much more difficult to find
a good detailed hair model that matches all four views in a limited
database, using the mask-based search in [Chai et al. 2016]. It is
even more difficult to combine physically inconsistent hairstyles at
different views.
One problem with single-view hair modeling techniques is the

lack of control over the final result at views distant from the input
one (e.g., the back view), as there is no input information at all. In
comparison, our method lets the user explicitly provide additional
hair images at the side and back views, which enables full control
over the final hair model at different views.

2.4 PatchMatch-based Texture Synthesis
Our hair texture synthesis algorithm is motivated by the PatchMatch
algorithm [Barnes et al. 2009, 2010], which efficiently computes
a Nearest-Neighbor Field (NNF) that stores the correspondences

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

A Data-driven Approach to Four-view Image-based Hair Modeling • 156:3

Fig. 2. Camera specification. For the four images shown on the left (with
hair contours marked), the user roughly adjusts their sizes and orientations
in a 3D coordinate system with a reference head model. Our UI is shown
on the right. Camera parameters Ti for each image can be computed once
the adjustment is finished.

between patches of a 2D image, as well as the Image Melding
technique that builds on PatchMatch to combine inconsistent 2D
images [Darabi et al. 2012]. We adapt the original PatchMatch
and Image Melding algorithms to our specific domain, where the
input is four images and their spatial relationships are described by
corresponding camera specifications.

3 OVERVIEW
Given four hair images taken from the front, back, left and right
views as input, our method first constructs a rough 3D hair shape:
we segment the regions that contain the hair in all input images, and
roughly specify the view condition for each image; then we search in
a predefined 3D hair database and select a model that best matches
the hair contours at different views; the model is further deformed to
better align with the hair contours and clipped against the hair-face
boundaries. Next, we synthesize a consistent hair texture over the
surface of the hair shape, by fusing information from different hair
images. We subsequently compute hair directions on the hair shape
surface and propagate them into the entire volume, which results
in a 3D direction field. Guided by this direction field, we trace and
generate 3D hair strands from the scalp, and refine the details by
piecewise helix fitting. The output of our method is a consistent,
detailed strand-level 3D hair model, which closely resembles the
hair in the input images.

4 OUR HAIR MODELING PIPELINE
We describe our hair modeling pipeline in details. Please refer to
the supplemental material for a list of notations used in this section.
Given four input images {Ii }, (i = 1, 2, 3, 4) that depict the hair

from the front, back and two side views, the first step in our method
is to segment the regions that contain the hair. We adopt the user-
assisted tool in [Li et al. 2004] to efficiently perform this task. Other
popular segmentation tools can also be used here. The resultant
binary hair mask is denoted as {M I

i }. We set the value of a pixel
of the mask to 1 if it is in the regions that contain the hair and 0
otherwise.

The next step is to roughly specify the camera configuration for
each image, assuming that the camera is orthographic. We develop
a simple user interface to facilitate this task. Please see Fig. 2 for an
illustration. For each segmented hair image, the user first roughly
selects a view direction (i.e., front, back, left-side or right-side);
then the hair contour of the image, obtained from the previous
segmentation step, is projected onto a 3D plane, which orients

toward the user-specified view direction that passes through the
center of a reference 3D head model. The transformation of this
reference head model is computed with [Blanz and Vetter 1999]
for the subject in the front-view image to match the facial feature
points. With all contours from different views visualized along with
the reference head model, the user can further fine-tune the view
direction, or translate, rotate or scale each hair contour to make it
consistent with others. The corresponding camera parameters Ti
for each image Ii can be directly computed, once the user finishes
adjusting the hair contour in the 3D space. Note that our modeling
algorithm does not require accurate specifications of the camera
parameters, which will be demonstrated in Sec. 5.

4.1 Rough Hair Shape Construction
Once we obtain estimations of camera configurations for all four
input images, we use this information along with the hair contours
to build a rough 3D shape that represents the coarse-scale hair
geometry. The detailed hair strands are generated in later stages of
our pipeline, where issues like potential inconsistencies in the hair
among different input images are resolved. Note that constructing a
3D shape solely from as few as four images is highly challenging.
Therefore, similar to previous work [Chai et al. 2016; Hu et al. 2015],
we use a data-driven approach to build the shape with the help of
a predefined database of 3D hair models, detailed as follows. An
example of the construction process is shown in Fig. 3.

4.1.1 Database Model Search. We search in the 3D hair database
of [Chai et al. 2016] for the model GDB that minimizes the sum of
distances between the input hair masksM I

i and the hair masks in
the database MH

i , based on the distance field DI
i of the hair mask

M I
i as:

dist({M I
i }, {MH

i }) =
∑
i

∑
j ∈M I

i ⊕MH
i
|DI

i (j)|

A(M I
i)

, (1)

where i denotes the view, MH
i is a binary mask generated by ren-

dering a database model using the camera parameters Ti , and A(·)
computes the area of a mask.M I

i ⊕ MH
i represents the symmetric

difference between two masks. Please refer to the supplemental
material for a visualization of the database.

4.1.2 High-frequency Detail Removal. Once the best database
model GDB is retrieved, we need to remove its excessive high-
frequency geometric details, as typically they are not consistent
with the hair in the input images, even though the rendered masks
of the model {MH

i } are close to the hair masks {M I
i } at different

views. To do so, we first convert GDB into a Signed Distance Field
(SDF) with a resolution of 100×100×100 over the bounding cube of
the model [Zhao 2005]: after the voxelization step of the conversion,
we blur the details by filtering the voxels (0 for empty voxels and 1
for non-empty ones) with a 3D Gaussian kernel (σ = 3

100b, where
b is the length of the bounding cube of the model), and perform
thresholding to transform the result back to a binary form. Finally,
we apply the marching cube algorithm [Lorensen and Cline 1987]
to obtain a closed triangular mesh GMC from the SDF.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

156:4 • M. Zhang et. al.

Fig. 3. Rough hair shape construction. From left to right, the front-view
image with hair contour marked, the model retrieved from the database,
the result after detail removal and mask-based deformation, and the final
hair shape after visibility- and boundary-based clipping.

4.1.3 Mask-based Deformation. Due to the complexity of real-
world hairstyles, it is inevitable that the database model we retrieve
does not align perfectly with the hair contours in segmented images.
Moreover, the high-frequency detail removal step introduces addi-
tional changes to the shape. To alleviate this issue, we deform our
current meshGMC to match the hair masks from different views, by
extending the formulation in [Chai et al. 2016] to themulti-view case.
Specifically, we deform each vertex p in GMC to p′ by minimizing
the following energy:

argmin
p′

∑
pj ∈GMC

[
∑

i=1,2,3,4
| |Pdi (pj

′ −Wi (pj))| |2

+ λ | |∆pj ′ −
δj

|∆pj ′|
∆pj

′| |2], (2)

where Pd projects a vector along a direction d :

Pd (p) = p − (p · d)d .
Here the first term in Eqn. (2) measures the deviation of a vertex
to its deformation target along each view direction di , and the
second is a regularization term to preserve local geometric features
in the original shape.Wi is a warping function computed with thin
plate spline, ∆ is the discrete mesh Laplacian operator based on the
cotangent formula, and δj is the magnitude of Laplacian coordinates
of vertex vj in GMC . We set λ = 1 in all experiments. The result
after the deformation is denoted as GDEF .

4.1.4 Visibility- and Boundary-based Clipping. We first remove
the inner surface of the rough hair shapeGDEF : we connect a line
segment from the center of the head to each vertex; if this line
segment intersects with another part of G, we keep the vertex as it
belongs to the outer surface of G; otherwise we remove the vertex.
Furthermore, we clip the result against the hair-face boundaries in
{Ii } for each view. This step further improves the geometric quality,
resulting in the final 3D rough hair shape G. An example can be
found in Fig. 3.

4.2 Hair Texture Synthesis from Multiple Sources
After the rough hair shapeG is obtained, we synthesize a consistent
hair texture over its surface using the input images as sources. This
texture will be used to construct a 3D direction field that guides the
hair strand generation. The simplest way to obtain a hair texture
is to project each Ii onto the hair shape based on its camera Ti and
linearly blend in overlapping regions. But the quality of the result

Fig. 4. Remeshing results by uniformly sampling new vertices with different
densities, which will later be used in hair texture synthesis.

would be limited: due to unreliable correspondences among input
images, direct linear blending is likely to blur intricate hair details,
which leads to inaccuracies in subsequent hair direction estimation;
there might be holes due to insufficient coverage of input images.
To produce a high-quality hair texture from multiple sources, we
propose a patch-based hair texture synthesis approach inspired by
Image Melding [Darabi et al. 2012].
Directly applying the image melding technique to our problem

is not feasible, due to two key differences. First, the original tech-
nique generates a regular 2D image as output, while our resultant
texture is defined on a non-regular 3D surface. Second, the sources
in [Darabi et al. 2012] are independent 2D images, while each of our
source images is associated with a camera that describes its spatial
relationship with other images. We thus develop a texture synthesis
algorithm that takes into account these differences, described as
follows.

4.2.1 Preprocessing. Specifically, we first perform remeshing by
uniformly sampling new vertices {pj } over the surface of G via
the method in [Valette and Chassery 2004]. An example is shown
in Fig. 4. Next, we compute a uv-mapping ofG using the UVAtlas
tool [Microsoft 2017], to parameterize the hair texture. For each pj ,
we define its associated patch of the sizem×m, by projecting a region
of the texture around pj along the normal direction to its tangent
plane. A patch can be viewed as a local resampling of the hair texture,
following previous work such as [Wei and Levoy 2001]. Each pixel
on a patch corresponds to a 3D point on G, which subsequently
corresponds to a texel based on the uv-parameterization. Note that
multi-resolution versions of vertices and the texture are created for
later processing. We use four scales in all experiments. The hair
texture I is initialized by projecting each Ii on toG and then update
corresponding texels; the closest view with respect to the surface
normal is selected, if a texel corresponds to multiple projections; for
holes not covered by the projections of input images, we fill them
using interpolations from hole boundaries with inverse distance
weighting [Wexler et al. 2007].

4.2.2 Main algorithm. Similar to [Darabi et al. 2012], our hair
texture synthesis algorithm repeats the following process for a
user-specified number of iterations at each scale in a coarse-to-
fine fashion. First, we perform single-source patch-based synthesis
(denoted as SingleSourceSynthesis in Algorithm 1 and described
in Sec. 4.3) separately for each input image Ii , to fill in the regions
of surface on G not covered by the projection of Ii . Second, the
colors and gradients from the synthesis results of each input image
are blended based on view-dependent weights αi , computed as the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

A Data-driven Approach to Four-view Image-based Hair Modeling • 156:5

Fig. 5. Progress of our hair texture synthesis (cf. the second row of Fig. 14
for input images). The left image is the texture after the initialization, the
center image is the intermediate result after half of the total iterations, and
the right image shows the final synthesis result. Our synthesis algorithm
resolves the inconsistencies in the initial texture due to multi-view sources,
and produces a high-quality final result.

ALGORITHM 1: Hair texture synthesis algorithm

for scale = 1 → 4 do
for iteration = 1→ n do

for i = 1 → 4 do
I i ← SingleSourceSynthesis(I , Ii)

end for
I = α1I 1 + α2I 2 + α3I 3 + α4I 4
j ← argmaxα j |�I j |
�I ← �I j
I ← ScreenedPoisson(I , �I)

end for
end for

dot product between a vertex normal corresponding to a texel and
the inverse view direction, and further normalized to ensure that∑
i αi = 1. Finally, we update the hair texture colors based on the

gradients by solving the screened Poisson equation [Bhat et al. 2008].
Please see Algorithm 1 for details. An example of the synthesis result
is shown in Fig. 5.

4.3 Single-source Patch-based Synthesis
Now we describe in details the single-source patch-based synthesis
for each input image Ii , denoted as SingleSourceSynthesis(R,S),
which is the key part in hair texture synthesis from multiple sources.
Similar to [Darabi et al. 2012], our goal is to fill the contents in a
target region R with those from the source S . To do so, we minimize
the sum of squared differences between corresponding texels via
patch-based optimization:

E(R, S) =
∑

U (C(X))∈R
min

U (C(Y))∈S
| |Y − X | |2. (3)

Here we divide the resultant texture into S and R. We determine
if a texel belongs to S by testing the following two conditions:
(1) the corresponding 3D point on G can be back-projected with
no obstacles to M I

i under the camera Ti ; (2) the angle between
the corresponding normal and the direction of back-projection
is below a threshold θ (θ = π

4 in our experiments). C(·) returns
the center point p corresponding to a patch, U (·) returns the texel
corresponding to a 3D point based on the uv-parameterization on
G. Y is an m×m patch, and X = f (N (p)) is an m×m patch after
applying a geometric transformation f on a small neighborhood

N around a source point p. We define f to be the concatenation
of an in-tangent-plane scaling in the range of [0.9, 1.1], and an
in-tangent-plane rotation in the range of [− π

15 ,
π
15].

To solve this optimization, we alternate between two steps, patch
search and color voting, as in [Darabi et al. 2012]. We first define
a source patch X as a patch that satisfies ∀x ∈ X , U (x) ∈ S . Any
patch that does not meet this condition is classified as a target patch.
In the patch search step, we find the most similar source patch for
every target patch. Next, in the color voting step, each patch casts
votes on every texel, which are then weighted averaged to generate
a new texture.

4.3.1 Patch Search. The first step in the optimization is to search
for the source patch that best matches a given target patch. Gener-
alized PatchMatch [Barnes et al. 2010] is adopted in [Darabi et al.
2012] to perform this task efficiently. However, PatchMatch works
on regular 2D images and cannot be extended to our problem in a
straightforward manner. Therefore, we develop an approach that
changes the following key components in the original algorithm, in
order to adapt to our domain.

NNF. Similar to PatchMatch, we compute an NNF over all vertices.
At each vertexpj , the NNF stores a 2D coordinate on the input image
Ii , denoted as дj .
Initialization. If U (pi) ∈ S , then we can directly obtain дj by

back-projecting pi to the image plane. Otherwise, the offsets are
initialized with random coordinates inside the hair mask.

Scan Order. We no longer have a native
scan order for applying PatchMatch over
vertices on a 2-manifold, while the origi-
nal work processes in the scan-line order.
To solve this issue, we start with a vertex
on the top of the rough hair shape of hair,
and then travel its n-th ring neighborhood
in the counter-clockwise order (n = 1, 2,
...), until all vertices are processed. An
example is shown in the inset figure, with each ring visualized in a
same color.

Propagation. The NNF at a vertex pj could get improved by prop-
agating the information from its one-ring neighborhood. However,
it is not trivial to apply the original 2D image-based propagation:
the offset between two 3D vertices (pj and its spatial neighbor)
is not of the same measure as the offset on the input 2D image.
To tackle this problem, we harness the additional information of
the camera Ti associated with Ii and convert the 3D offset into
a 2D one via a transformation. Please see Fig. 6 for a graphical
illustration. Specifically, we suppose that the patch match error at
a vertex pk is smaller than that at pj . To update the NNF дj with
дk , we first project the pixel on Ii corresponding to дk to G using
Ti , and denote the projected 3D point on G as q = Tiдk . Next,
we compute an affine transformation T̂k (translation and rotation),
which transforms the local frame at pk to that at q. Then we can
update дj as дj = T−1

i T̂kpj . Note that in analogy to the original
work, we check the visited / unvisited one-ring neighborhood in
counter-clockwise order at odd / even iterations. The tangent at
each vertex is computed as the normalized cross product of the
normal and the positive y direction. This simple method works well

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

156:6 • M. Zhang et. al.

G

Ii pj

pk

Tk•pj
ˆ

Tk
ˆ

Tk
ˆ

q

Ti
-1

Ti

nk

nq

tq

tkZkTiuk

Xj

gk

gj

Fig. 6. An illustration of propagation and random search. To propagate the
offset дk of pk to pj , we first compute T̂k that transforms the local frame
at pk to q . Then we apply the same transform to pj and back-project to the
image plane, resulting in the updated offset дj . To perform random search,
we first compute a random offset uk , and then obtain its associated patch
Zk by projecting from the image plane onto the rough hair shape G . Next,
Zk is compared with X j to check if it can improve the NNF at pj .

in all our experiments. More advanced techniques such as [Fisher
et al. 2007] can also be employed here.
Random Search. A similar problem arises in directly applying

the original random search to our domain, due to the mismatch
in 3D and 2D offsets. We also tackle this issue with the help of Ti .
Specifically, we try to improve the NNF дj corresponding to the
vertex pj , by testing the differences between the current patch X j
and a series of candidate patches {Zk }. To construct a Zk , we first
compute a random offset uk as:

uk = дj +wβkrk , (4)

where rk is a 2D uniform random variable in [−1, 1]2, w is a max-
imum search distance (w = the dimension of Ii), and β = 0.5 is a
fixed ratio between search window sizes. The process is repeated
until wβk is below one pixel. Once uk is computed, we project it
onto G using Ti , and denote the patch centered at the intersection
as Zk . Please see Fig. 6 for a graphical illustration.

4.3.2 Color Voting. Once the patch search is finished, the second
step in our single-source synthesis is color voting. Similar to [Darabi
et al. 2012], the optimal texture I i is computed as the weighted
average of the corresponding pixels in all overlapping patches:

I i (t) =

∑
j γjX j (p(t))∑

j γj
. (5)

Here t represent 2D texel coordinates, and p(t) is the 3D point on
G that corresponds to the texel I i (t). {X j } is the set of all patches,
whose projection onto G contains p(t). We denote the patch texel
on X j , whose projection is p(t), as X j (p(t)). γj is a view-dependent
weight, computed as the dot product between the normal at p(t)
and the normal of the patch X j ; the result is further clamped to zero,
if it is less than 0.5.

4.4 Hair Direction Field Construction
After we obtain a hair texture over the surface of the hair shape G,
we compute a 3D hair direction field to guide hair strand generation
in the subsequent stage, similar to existing work such as [Chai et al.
2013].
First, we apply the iterative refinement method in [Chai et al.

2012] on each texel of the hair texture to obtain a hair direction

texture. Note that here we work on the tangent plane at the 3D
point corresponding to a texel, rather than in the texture space
directly. We then render the result at five different views: front,
back, left-side, right-side and top. Directional ambiguities due to
issues like imperfection of the imaging process are resolved by
user strokes on individual views, which roughly indicate the hair
growth directions, similar to [Chai et al. 2013]: the user strokes
are projected onto the hair direction texture, based on G; if there
are more than one user stroke over a texel, we select one from the
closest view with respect to the normal corresponding to the texel.
With user strokes as directional constraints, we update the hair
direction texture via binary integer programming, as in [Chai et al.
2013]. Finally, we construct a uniform 3D direction field inside the
volume of the closed meshGDEF , using the hair direction texture as
constraints on the surface of the rough hair shape and minimizing
a least-squares energy function as in [Chai et al. 2013].

4.5 Hair Strand Generation
With the help of the hair direction field, we generate 3D hair strands
using a two-stepmethod. In the first step, similar to [Chai et al. 2013],
we uniformly sample a default scalp region on the reference head
model to grow 2,000∼2,500 guide strands, according to the directions
stored in the hair direction field. The growing is terminated when a
maximum curve length is exceeded or the strand is outside ofGDEF .
The second step adds new strands that are as visually and physically
plausible as the guide strands, in order to fill in the remaining empty
space in the volume. For each new strand, we again uniformly
sample the scalp region as the starting point, then copy the nearest
guide strand. After that, we adopt the linear blend skinning approach
in [Hu et al. 2015] to deform the new strand to be coherent with
neighboring ones. Note that we enforce the mask constraints in
strand generation, so that the projection of each strand using Ti
must stay inside the hair mask M I

i for i = 1, 2, 3 and 4. We use a
fixed strand number of 30,000 in our experiments.

4.6 Detail Refinement
As our hair direction texture is defined over the surface ofG , the hair
direction at each point lies within the corresponding tangent plane;
there is no information about the component of the hair direction
along the normal direction. We alleviate this problem by extending
the detail refinement technique in [Hu et al. 2015] from a single
image domain to a 2-manifold, which fits piecewise helix curves to
the guide strands. Please see Fig. 7 for an example.
Specifically, we first propagate the normals from the surface of

G to the entire hair shape volume, using the same method as we
construct the hair direction volume from the hair texture [Chai
et al. 2013], which results in a normal volume that indicates the
directions of refinement. Next, for each guide strand, we compute
the normal at each of its vertex by interpolating from the normal
volume, and divide the strand into a few segments based on normal
variations: for each segment, the angle between the normal at each
vertex and the average normal is below a threshold (we use 25◦ in
all experiments). Finally, we project each strand segment to a plane
perpendicular to the average normal, and fit a piecewise helix curve
with the method of [Cherin et al. 2014].

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

A Data-driven Approach to Four-view Image-based Hair Modeling • 156:7

Fig. 7. Detail refinement. The left image shows a model without detail
refinement, and the right one is generated with the refinement, exhibiting
richer details.

Fig. 8. Hair texture synthesis results from different views. Input images
are from the first row of Fig. 14, the last row of Fig. 17, Fig. 11 and Fig. 1,
respectively.

5 EXPERIMENTAL RESULTS
All experiments are conducted on a workstation with an Intel i5-
4590 CPU and 32GB of memory. For a typical input set of four
800×800 images, the total processing time using our unoptimized
pipeline is about 25 minutes. The majority of time spends on the
patch-based synthesis of a hair texture of 2048×2048, which takes 14
minutes. We use 20, 10, 5 and 2 iterations for 4 scales in hair texture
synthesis, respectively. It takes about 6 minutes in total to finish

Fig. 9. A failure case due to multi-view inconsistency. Input images are
shown in the top row, and themodeling result in the bottom. Themain reason
for the failure is that physically there is no rough hair shape that can match
the hair masks in all views. Source photos courtesy of RebeccaFashion.

all user interactions in our pipeline, including hair segmentation,
camera specification and hair direction disambiguation. We show
the user input for each example in this paper, as well as a video on a
complete interactive editing session, in the supplemental materials.

5.1 Modeling
We first demonstrate in Fig. 1 and 17 the effectiveness and generality
of our method with the modeling results on a variety of hairstyles,
ranging from short / straight to long / curly. Each result is computed
using four-view images of the same hair. As shown in Fig. 1 and 17,
the 3D strand-level hair models produced by our method closely
resemble the hair at all input views, and the resultant hair strands
are spatially consistent. Please also refer to the accompanying video
for more details.

Thanks to our multi-source patch-based synthesis algorithm, we
do not require that the input images are from exactly the same hair,
as the slight inconsistencies among the input images can be resolved
in the hair texture synthesis. This enables a novel application for
hair modeling using Internet images: given a single-view hair image,
the user can manually search over the Internet for images taken
from other views, which look similar to the hair in the first image.
Our approach produces plausible 3D results in this case, as shown
in Fig. 14. Furthermore, we can even “meld” highly different hairs
at different views, to create novel, interesting hairstyles, such as
one that is curly at the front view and straight at the back, shown
in Fig. 14. Again the considerable inconsistencies are well resolved,
using our hair texture synthesis algorithm. Please also refer to the
accompanying video for demonstrations.
Although our pipeline can combine different hairs, we require

that the hair masks at four input images roughly correspond to a
plausible 3D shape. Otherwise, it is physically impossible to satisfy
all the mask constraints, which leads to poor results shown in Fig. 9.
In addition, highly curly hairstyles are known to be challenging for
single-image-based hair modeling. Our approach cannot produce
high-quality results for such hairstyles. A failure case is shown in
Fig. 10.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

156:8 • M. Zhang et. al.

Fig. 10. A failure case on a highly curly hairstyle. From left to right, the
front / back input images, and the modeling results at corresponding views.
Source photos courtesy of RebeccaFashion.

5.2 Comparisons
We first compare our method with AutoHair [Chai et al. 2016],
a state-of-the-art single-view-based hair modeling technique, in
Fig. 15. AutoHair relies on the retrieved model from a 3D hair model
database to generate hair strands at the back or side views, where
there is no input information. In comparison, our approach explicitly
takes as input four images from different views, and produces a hair
model that closely resembles the hair at all views. Please refer to
the accompanying video for more detailed comparisons.

In Fig. 16, we compare our method with a state-of-the-art multi-
view hair modeling method [Hu et al. 2014]. The high-quality result
using their method is computed with 66 images, simultaneously
captured with a setup consisting of the same number of DSLRs. In
comparison, we use only 4 of the original images as input to our
algorithm. The result looks plausible and closely matches the input
images. Note that our method does not require any complex setup
for image capturing.

In addition, we compare with the lightweight modeling technique
from [Vanakittistien et al. 2016] using four more photos as input.
Please see Fig. 11 for a detailed comparison. Note that even for views
used as input in [Vanakittistien et al. 2016] but not in our approach,
our result exhibits considerably higher quality with realistic details
close to those in the photos.

5.3 Evaluation
To evaluate the efficacy of our hair texture synthesis algorithm, we
show in Fig. 8 the synthesis results on a variety of cases, includ-
ing those with different hairs at different views. The results are
consistent and of high quality, which makes it possible to generate
compelling 3D hair models by applying subsequent processing steps.

To evaluate the robustness of our approach with respect to errors
in camera specifications of input images, we add unbiased Gaussian
noise to the view directions in one controlled experiment, where
the ground-truth camera parameters are calibrated. Specifically, we
perturb the view direction of each image with an angle sampled
from a Gaussian distribution with a standard deviation of σ . As can
be seen in Fig. 12, our approach is robust with respect to the errors
in view directions. The result is still of visually high quality even
when σ = 25◦.

We also evaluate the impact of the number of input images in
Fig. 13. Thanks to the novel, robust hair texture synthesis algorithm,
our system still produces plausible results with as few as two input
images. Adding more input images results in more complete control
over the final hair model, as shown in the figure.

Fig. 11. Comparisons with [Vanakittistien et al. 2016]. From top to bottom,
input images, our result using the first 4 input photos in the first row, and
the result of [Vanakittistien et al. 2016] using all 8 photos. Our result shows
more realistic details even for views not used in our input (i.e., the second /
third column).

Fig. 12. Impact of camera specification errors. Gaussian noise with σ =
0◦/10◦/25◦ (the first/second/third row) is added to the ground-truth view
direction of each input image (cf. Fig. 2). The corresponding modeling results
are shown in each row.

6 CONCLUSIONS AND FUTURE WORK
Wehave presented a lightweight, image-based hairmodelingmethod
that takes as input only four hair images at the front, back, left and
right views, and produces a high-quality strand-level 3D hair model.
Our result closely resembles the hair at all input views. The core
of our pipeline is a novel patch-based multi-source hair texture
synthesis algorithm, which enables creative hairstyle design by

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

A Data-driven Approach to Four-view Image-based Hair Modeling • 156:9

Fig. 13. Impact of the number of input images. From top to bot-
tom, our modeling results with 2 (front/back), 3 (front/back/left) and 4
(front/back/left/right) input images, respectively (cf. input images in Fig. 1).

combining different hairstyles at different views into a consistent
3D hair model.

Our work is subject to a number of limitations, which may inspire
interesting future work. First, it would be desirable to completely
automate our pipeline, by extending the work of [Chai et al. 2016]
with additional training data on side- and back-view hair images, as
well as associated camera parameters. Moreover, it would be inter-
esting to take into consideration the appearance of hair at different
views, in addition to geometric information, so that cool effects like
multi-color-dyed hairstyles can be created. Finally, unlike [Hu et al.
2014], we do not handle constrained hairstyles such as braids and
buns. It would be useful to extend our approach to process these
complicated cases.

ACKNOWLEDGEMENTS
We would like to thank Qi Zhang, Cassandre Bourdon, Linli Huang,
Laura Schmidt, Thauana de Morais, Nanna Carstens and Angelique
Wu for being our hair models, Yanliang Li from RebeccaFashion for
generously providing hair images, Liwen Hu and Hao Li for help
with comparisons, the artists for making their hair models avail-
able on The Sims Resource and Newsea platform, and anonymous
reviewers for constructive comments.

REFERENCES
Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-

Match: A Randomized Correspondence Algorithm for Structural Image Editing.
ACM Trans. Graph. 28, 3, Article 24 (July 2009), 11 pages.

Connelly Barnes, Eli Shechtman, Dan B. Goldman, and Adam Finkelstein. 2010. The
Generalized Patchmatch Correspondence Algorithm. In ECCV’10. 29–43.

Pravin Bhat, Brian Curless, Michael Cohen, and C. Lawrence Zitnick. 2008. ECCV.
114–128.

Volker Blanz and Thomas Vetter. 1999. A Morphable Model for the Synthesis of 3D
Faces. In Proc. SIGGRAPH ’99. 187–194.

Chen Cao, Hongzhi Wu, Yanlin Weng, Tianjia Shao, and Kun Zhou. 2016. Real-time
Facial Animation with Image-based Dynamic Avatars. ACM Trans. Graph. 35, 4
(2016), 126.

Menglei Chai, Linjie Luo, Kalyan Sunkavalli, Nathan Carr, Sunil Hadap, and Kun Zhou.
2015. High-quality hair modeling from a single portrait photo. ACM Trans. Graph.
34, 6 (2015), 204.

Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin Weng, and Kun Zhou. 2016. AutoHair:
Fully Automatic Hair Modeling from A Single Image. ACM Trans. Graph. 35, 4
(2016), 116.

Menglei Chai, Lvdi Wang, Yanlin Weng, Xiaogang Jin, and Kun Zhou. 2013. Dynamic
hair manipulation in images and videos. ACM Trans. Graph. 32, 4 (2013), 75.

Menglei Chai, Lvdi Wang, Yanlin Weng, Yizhou Yu, Baining Guo, and Kun Zhou. 2012.
Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4 (2012),
116.

Nicolas Cherin, Frederic Cordier, and Mahmoud Melkemi. 2014. Modeling piecewise
helix curves from 2D sketches. Computer-Aided Design 46 (2014), 258 – 262.

Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B. Goldman, and Pradeep Sen.
2012. Image Melding: Combining Inconsistent Images Using Patch-based Synthesis.
ACM Trans. Graph. 31, 4, Article 82 (July 2012), 10 pages.

Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. 2007. Design
of Tangent Vector Fields. ACM Trans. Graph. 26, 3, Article 56 (July 2007). DOI:
https://doi.org/10.1145/1276377.1276447

Tomas Lay Herrera, Arno Zinke, and Andreas Weber. 2012. Lighting hair from the
inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6 (2012),
146.

Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2014. Robust hair capture using
simulated examples. ACM Trans. Graph. 33, 4 (2014), 126.

Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2015. Single-view hair modeling
using a hairstyle database. ACM Trans. Graph. 34, 4 (2015), 125.

Liwen Hu, Chongyang Ma, Linjie Luo, Li-Yi Wei, and Hao Li. 2014. Capturing Braided
Hairstyles. ACM Trans. Graph. 33, 6, Article 225 (Nov. 2014), 9 pages.

Wenzel Jakob, Jonathan T Moon, and Steve Marschner. 2009. Capturing hair assemblies
fiber by fiber. ACM Trans. Graph. 28, 5 (2009), 164.

Tae-Yong Kim and Ulrich Neumann. 2002. Interactive Multiresolution Hair Modeling
and Editing. ACM Trans. Graph. 21, 3 (July 2002), 620–629.

Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. 2004. Lazy Snapping. ACM
Trans. Graph. 23, 3 (Aug. 2004), 303–308.

William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. In SIGGRAPH ’87 (SIGGRAPH ’87). ACM, 163–169.

Linjie Luo, Hao Li, and Szymon Rusinkiewicz. 2013. Structure-aware hair capture. ACM
Trans. Graph. 32, 4 (2013), 76.

Microsoft. 2017. UVAtlas. https://github.com/Microsoft/UVAtlas/. (2017).
Sylvain Paris, Hector M. Briceño, and François X. Sillion. 2004. Capture of Hair

Geometry from Multiple Images. ACM Trans. Graph. 23, 3 (Aug. 2004), 712–719.
Sylvain Paris, Will Chang, Oleg I Kozhushnyan, Wojciech Jarosz, Wojciech Matusik,

Matthias Zwicker, and Frédo Durand. 2008. Hair photobooth: geometric and
photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3 (2008), 30.

Sastien Valette and Jean-Marc Chassery. 2004. Approximated Centroidal Voronoi
Diagrams for Uniform Polygonal Mesh Coarsening. Computer Graphics Forum 23, 3
(2004), 381–389.

Nuttapon Vanakittistien, Attawith Sudsang, and Nuttapong Chentanez. 2016. 3D Hair
Model from Small Set of Images. In Proceedings of MIG. ACM, New York, NY, USA,
85–90.

Lvdi Wang, Yizhou Yu, Kun Zhou, and Baining Guo. 2009. Example-based Hair
Geometry Synthesis. ACM Trans. Graph. 28, 3, Article 56 (July 2009), 9 pages.

Kelly Ward, Florence Bertails, Tae-Yong Kim, Stephen R Marschner, Marie-Paule Cani,
and Ming C Lin. 2007. A survey on hair modeling: Styling, simulation, and rendering.
IEEE Trans. Vis. Comp. Graph. 13, 2 (2007), 213–234.

Li-Yi Wei and Marc Levoy. 2001. Texture Synthesis over Arbitrary Manifold Surfaces.
In SIGGRAPH ’01. ACM, 355–360.

Yichen Wei, Eyal Ofek, Long Quan, and Heung-Yeung Shum. 2005. Modeling Hair from
Multiple Views. ACM Trans. Graph. 24, 3 (July 2005), 816–820.

Y. Wexler, E. Shechtman, and M. Irani. 2007. Space-Time Completion of Video. IEEE
TPAMI 29, 3 (2007), 463–476.

Xuan Yu, Zhan Yu, Xiaogang Chen, and Jingyi Yu. 2014. A Hybrid image-CAD Based
System for Modeling Realistic Hairstyles. In I3D ’14. ACM, 63–70.

Cem Yuksel, Scott Schaefer, and John Keyser. 2009. Hair meshes. ACM Trans. Graph.
28, 5 (2009), 166.

Hongkai Zhao. 2005. A fast sweeping method for eikonal equations. Mathematics of
computation 74, 250 (2005), 603–627.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

156:10 • M. Zhang et. al.

Fig. 14. Modeling with images that depict similar but not exactly the same hair (the top two rows), and even with images of considerably different hairs
in different views (the bottom two rows). The input images are shown on the left, and our modeling results are on the right. Source photos courtesy of
RebeccaFashion (row 1,2; column 2,3,4 of row 3; column 1,2 of row 4) and Bob Harris (column 1 of row 3).

(a) Input images (b) Our results (c) [Chai et al. 2016]
Fig. 15. Comparisons with a state-of-the-art single-view modeling method [Chai et al. 2016]. For left to right, our input images, our results and the results
using [Chai et al. 2016]. Original photos for the first example courtesy of RebeccaFashion.

(a) Input images (b) Our results (c) [Hu et al. 2014]
Fig. 16. Comparisons with a state-of-the-art multi-view modeling approach [Hu et al. 2014]. For left to right, our input images, our results, and the results
of [Hu et al. 2014] using 66 input photos. Original photos courtesy of Hu et al.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

A Data-driven Approach to Four-view Image-based Hair Modeling • 156:11

Fig. 17. Our hair modeling results with four-view images. For each row, the input images are shown on the left, and our modeling results are on the right.
Original photos of the fifth example courtesy of RebeccaFashion.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 156. Publication date: July 2017.

